(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
(1)(本小題滿分7分)選修4-2:矩陣與變換
(I)設(shè)A=(
ab
cd
),由A
i
1
i
,A
j
2
j
得:
ab
cd
1
0
=2
1
0
=
2
0
ab
cd
0
1
=-1×
0
1
=
0
-1
,
a=2
c=0
b=0
d=-1
,故A=
20
0-1
…4分
(II)設(shè)曲線x2+y2=1上任意一點(diǎn)(x,y)在矩陣A對應(yīng)的變換下得到的點(diǎn)為(x′,y′),則
20
0-1
x
y
=
x′
y′
,即
x′=2x
y′=-y
,
x=
1
2
x′
y=-y′
,從而(
1
2
x′)
2
+(-y′)2=1,即
x′2
4
+y′2=1,
∴新曲線方程為
x2
4
+y2=1…7分
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
∵(Ⅰ)C1
x=2sinθ
y=cosθ
為參數(shù)),C2
x=2t
y=t+1
(t
為參數(shù),
∴C1的普通方程為x2+y2=1,C2的普通方程為y=x-1…4分
(Ⅱ)在直角坐標(biāo)系中過極點(diǎn)即為過原點(diǎn)與曲線C2垂直的直線方程為y=-x,
在極坐標(biāo)系中,直線化為tanθ=1,方程為θ=
π
4
或θ=
4
…7分
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)
x<
1
2
4-4x≤5
1
2
≤x≤
3
2
2≤5
x>
3
2
4x-4≤5

∴不等式的解集為x∈[-
1
4
,
9
4
]…4分
(Ⅱ)若g(x)=
1
f(x)+m
的定義域?yàn)镽,則f(x)+m≠0恒成立,即f(x)+m=0在R上無解,
又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,
∴f(x)的最小值為2,
∴m<-2…7分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:江蘇省丹陽市08-09學(xué)年高二下學(xué)期期末測試(理) 題型:解答題

 (本題是選做題,滿分28分,請?jiān)谙旅嫠膫題目中選兩個作答,每小題14分,多做按前兩題給分)

A.(選修4-1:幾何證明選講)

如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PBAC于點(diǎn)E,交⊙O于點(diǎn)D,若PEPA,PD=1,BD=8,求線段BC的長.

 

 

 

 

 

 

B.(選修4-2:矩陣與變換)

在直角坐標(biāo)系中,已知橢圓,矩陣陣,求在矩陣作用下變換所得到的圖形的面積.

C.(選修4-4:坐標(biāo)系與參數(shù)方程)

直線(為參數(shù),為常數(shù)且)被以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,方程為的曲線所截,求截得的弦長.

D.(選修4-5:不等式選講)

設(shè),求證:.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案