【題目】求函數(shù)f(x)=﹣x2+4x﹣6,x∈[0,5]的值域(
A.[﹣6,﹣2]
B.[﹣11,﹣2]
C.[﹣11,﹣6]
D.[﹣11,﹣1]

【答案】B
【解析】解:函數(shù)f(x)=﹣x2+4x﹣6=﹣(x﹣2)2﹣2,
又x∈[0,5],
所以當(dāng)x=2時,f(x)取得最大值為﹣(2﹣2)2﹣2=﹣2;
當(dāng)x=5時,f(x)取得最小值為﹣(5﹣2)2﹣2=﹣11;
所以函數(shù)f(x)的值域是[﹣11,﹣2].
故選:B.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)和二次函數(shù)在閉區(qū)間上的最值的相關(guān)知識點,需要掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減;當(dāng)時,當(dāng)時,;當(dāng)時在上遞減,當(dāng)時,才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣東某市一玩具廠生產(chǎn)一種玩具深受大家喜歡,經(jīng)市場調(diào)查該商品每月的銷售量(單位:千件)與銷售價格(單位:元/件)滿足關(guān)系式,其中, 為常數(shù)已知銷售價格為4/件時,每日可售出玩具21千件.

1的值;

2假設(shè)該廠生產(chǎn)這種玩具的成本、員工工資等所有開銷折合為每件2元(只考慮銷售出的件數(shù)),試確定銷售價格的值,使該廠每日銷售這種玩具所獲得的利潤最大(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 的交點, 上任意一點.

1)證明:平面平面

2)若平面,并且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,關(guān)于正方體ABCD﹣A1B1C1D1 , 下面結(jié)論錯誤的是(
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.該正方體的外接球和內(nèi)接球的半徑之比為2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有4家直營店, , ,現(xiàn)需將6箱貨物運(yùn)送至直營店進(jìn)行銷售,各直營店出售該貨物以往所得利潤統(tǒng)計如下表所示根據(jù)此表,該公司獲得最大總利潤的運(yùn)送方式有

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),)的最小正周期是,將函數(shù)的圖象向左平移個單位長度后所得的函數(shù)為,則函數(shù)的圖象( )

A. 有一個對稱中心 B. 有一條對稱軸

C. 有一個對稱中心 D. 有一條對稱軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),前項和為,且.

1)求證:數(shù)列是等差數(shù)列;

2)若數(shù)列滿足,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),總有f(mn)=f(m)f(n),且f(x)>0,當(dāng)x>1時,f(x)>1.
(1)求f(1),f(﹣1)的值;
(2)判斷函數(shù)的奇偶性,并證明;
(3)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形為菱形,對角線的交點為,四邊形為梯形, .

(Ⅰ)若,求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)若 , ,求與平面所成角.

查看答案和解析>>

同步練習(xí)冊答案