分析 (1)要證A1C⊥BD,只需證DB⊥面A1ACC1即可,
(2)利用線面平行的判定證明.
解答 (1)證明:在正方體ABCD-A1B1C1D1中,則有DB⊥AC,DB⊥AA1,
且AA1∩AC=A,∴DB⊥面AA1C1C,
∵A1C?面AA1C1C,
∴A1C⊥BD;
(2)∵$\left\{\begin{array}{l}{{D}_{1}{C}_{1}=AB}\\{{D}_{1}{C}_{1}∥AB}\end{array}\right.$∴四邊形ABC1D1是平行四邊形,∴AD1∥BC1,
又∵DB∥B1D1,AD1?面AD1B1,B1D1?面AD1B1,
BD?面DBC1,BC1?面DBC1,且AD1 ∩D1B1=D1.
∴平面AB1D1∥平面BC1D.
點評 本題考查了空間線線,線面,面面位置關系,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{9}$ | B. | $\frac{9}{10}$ | C. | $\frac{7}{8}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 288 | B. | 144 | C. | 576 | D. | 96 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com