(12分)
用定義法證明:函數(shù)在(1,+∞)上是減函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)已知).
(1)判斷函數(shù)的奇偶性,并證明;
(2)若,用單調(diào)性定義證明函數(shù)在區(qū)間上單調(diào)遞減;
(3)是否存在實(shí)數(shù),使得的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/2/172rn4.png" style="vertical-align:middle;" />時(shí),值域?yàn)?br />,若存在,求出實(shí)數(shù)的取值范圍;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)設(shè)定義域都為的兩個(gè)函數(shù)的解析式分別為,
(1)求函數(shù)的值域;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)已知函數(shù)
(1)用分段函數(shù)的形式表示該函數(shù);
(2)在坐標(biāo)系中畫出該函數(shù)的圖像
(3)寫出該函數(shù)的定義域,值域,奇偶性和單調(diào)區(qū)間(不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在[-5,5]上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(I)求證:不論為何實(shí)數(shù)總是為增函數(shù);
(II)確定的值, 使為奇函數(shù);
(Ⅲ)當(dāng)為奇函數(shù)時(shí), 求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題14分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8d/2/r639h1.png" style="vertical-align:middle;" />,且滿足條件:
,②③當(dāng)
1)、求的值
2)、討論函數(shù)的單調(diào)性;
3)、求滿足的x的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
.已知函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案