【題目】已知向量 =(cosx+sinx,2sinx), =(cosx﹣sinx,cosx).令f(x)=
(1)求f(x)的最小正周期;
(2)求f(x)在[ , ]上的單調遞增區(qū)間.

【答案】
(1)解: f(x)=(cosx+sinx)(cosx﹣sinx)+2sinxcosx

=cos2x﹣sin2x+2sinxcosx

=cos2x+sin2x

= ;

;

即f(x)的最小正周期為π;


(2)解: ;

;

,即 時f(x)單調遞增;

∴f(x)的單調遞增區(qū)間為


【解析】(1)進行數(shù)量積的坐標運算并化簡即可得出 ,從而便可得出f(x)的最小正周期;(2)根據(jù)x 即可求出2x+ 的范圍,進而得出2x+ 在哪個范圍時f(x)單調遞增,進而求出對應x的范圍,即得出f(x)的單調遞增區(qū)間.
【考點精析】掌握正弦函數(shù)的單調性是解答本題的根本,需要知道正弦函數(shù)的單調性:在上是增函數(shù);在上是減函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左右焦點分別為 ,左頂點為,上頂點為 的面積為.

(1)求橢圓的方程;

(2)設直線 與橢圓相交于不同的兩點, 是線段的中點.若經(jīng)過點的直線與直線垂直于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(2,8)在拋物線,直線l和拋物線交于B,C兩點,焦點F是三角形ABC的重心,MBC的中點(不在x軸上)

(1)求M點的坐標;

(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形ABC中,內角A,B,C所對邊a,b,c成公比小于1的等比數(shù)列,且sinB+sin(A﹣C)=2sin2C.
(1)求內角B的余弦值;
(2)若b= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}中,q=2,a2+a5+…+a98=22,則數(shù)列{an}的前99項的和S99=(
A.100
B.88
C.77
D.68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若樣本的平均數(shù)是,方差是,則對樣本,下列結論正確的是 ( )

A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25

C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內加工的合格零件平均數(shù)都為

(1)分別求出m,n的值;

(2)分別求出甲、乙兩組技工在單位時間內加工的合格零件的方差,并由此分析兩組技工的加工水平;

(3)質檢部門從該車間甲、乙兩組技工中各隨機抽取一名技工,對其加工的零件進行檢測,若兩人加工的合格零件個數(shù)之和大于18,則稱該車間“質量合格”,求該車間“質量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求分數(shù)在[120,130)內的頻率;

(2)估計本次考試的中位數(shù);

(3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的兩個焦點坐標分別為F1(-,0)F2(,0),且橢圓過點

(1)求橢圓方程;

(2)過點作不與y軸垂直的直線l交該橢圓于MN兩點,A為橢圓的左頂點,證明

查看答案和解析>>

同步練習冊答案