已知函數(shù)(1)當(dāng)時(shí),求函數(shù)f(x)的值域;(2)將函數(shù)f(x)的圖象按向量a=(h,k)(0<h<π)平移,使得平移后的函數(shù)g(x)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),求函數(shù)g(x)的單調(diào)遞增區(qū)間.
解: (1) ∴函數(shù)的值域?yàn)?/FONT>(2)函數(shù)的圖象按向量平移后的解析式為:即:其圖象的對(duì)稱(chēng)軸方程都可表示為:又 該圖象關(guān)于直線(xiàn)對(duì)稱(chēng),
令 解之得:函數(shù)的單調(diào)遞增區(qū)間為: |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年西藏拉薩中學(xué)高三上學(xué)期第四次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè)當(dāng)時(shí),若對(duì)任意,存在,使恒成立,求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省東莞市五校高三第一次聯(lián)考理科數(shù)學(xué)卷 題型:解答題
(本小題滿(mǎn)分14分)已知函數(shù)
(1)當(dāng)時(shí), 證明: 不等式恒成立;
(2)若數(shù)列滿(mǎn)足,證明數(shù)列是等比數(shù)列,并求出數(shù)列、的通項(xiàng)公式;
(3)在(2)的條件下,若,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)南市高三一模數(shù)學(xué)理卷 題型:解答題
( (本小題滿(mǎn)分14分)
已知函數(shù)
(1) 當(dāng)時(shí),求函數(shù)的最值;
(2) 求函數(shù)的單調(diào)區(qū)間;
(3) 試說(shuō)明是否存在實(shí)數(shù)使的圖象與無(wú)公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年臨川二中新余四中高三暑假聯(lián)考文科數(shù)學(xué)卷 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù),
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)在[2,0]上不單調(diào),且時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆山東省下學(xué)期高三月考理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù)
(1) 當(dāng)時(shí),求函數(shù)的最小值;
(2) 求函數(shù)的單調(diào)區(qū)間;
(3) 試說(shuō)明是否存在實(shí)數(shù)使的圖象與無(wú)公共點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com