等比數(shù)列{an}是遞減數(shù)列,其前n項積為Tn,若T10=16T6,則a6•a11=


  1. A.
    ±2
  2. B.
    ±4
  3. C.
    2
  4. D.
    4
D
分析:利用等比數(shù)列{an}是遞減數(shù)列,其前n項積為Tn,T10=16T6,可得a8a9=4,再利用等比數(shù)列的性質a6•a11=a8a9,即可得出結論.
解答:∵T10=16T6,

∴a8a9=±4
∵等比數(shù)列{ an }是遞減數(shù)列
∴0<q<1
∴a8a9=4
∴a6•a11=a8a9=4
故選D.
點評:本題以等比數(shù)列為載體,考查等比數(shù)列的性質,解題的關鍵是正確運用等比數(shù)列前n項積為Tn
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足遞推關系式:an=
4an-1-2
an-1+1
(n≥2,n∈N),首項為a1

(1)若a1>a2,求a1的取值范圍;
(2)記bn=
an-2
an-1
(n∈N*),1<a1<2,求證:數(shù)列{bn}
是等比數(shù)列;
(3)若an>an+1(n∈N*)恒成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)二模)對數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個結論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足遞推式an=2an-1+1(n≥2),其中a4=15.
(Ⅰ)求a1,a2,a3
(Ⅱ)求證數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅲ)已知數(shù)列{bn}有bn=
nan+1
求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

收集本地區(qū)教育儲蓄信息,有一公民的儲蓄方式為:第一年末存入a1元,以后每年末存入的數(shù)目均比上一年增加d(d>0)元,因此,歷年所存入的教育儲蓄金數(shù)目a1,a2,…是一個公差為d的等差數(shù)列,與此同時,政府給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復利,也不征利息稅.這就是說,如果固定年利率為p(p>0),那么,在第n年末,第一年所存入的儲蓄金就變?yōu)閍1(1+p)n-1,第二年所存入的儲蓄金就變?yōu)閍2(1+p)n-2,…,以Wn表示到第n年末所累計的儲蓄金總額.
(1)寫出Wn與Wn-1(n≥2)的遞推關系式;
(2)是否存在數(shù)列{An},{Bn}使Wn=An+Bn,其中{An}是一個等比數(shù)列,{Bn}是一個等差數(shù)列,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某國采用養(yǎng)老儲備金制度.公民在就業(yè)的第一年就交納養(yǎng)老儲備金,數(shù)目為a,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲備金數(shù)目a1,a2,…是一個公差為d的等差數(shù)列.與此同時,國家給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復利.這就是說,如果固定年利率為r(r>0),那么,在第n年末,第l年所交納的儲備金就變?yōu)?span id="ism6wei" class="MathJye">a1(1+r)n-1,第2年所交納的儲備金就變?yōu)?span id="q6wq6k4" class="MathJye">a2(1+r)n-2…以Tn表示到第n年末所累計的儲備金總額.
(1)寫出Tn與Tn-1(n≥2)的遞推關系式;
(2)求證:Tn=An+Bn,其中{An}是一個等比數(shù)列,{Bn}是一個等差數(shù)列.

查看答案和解析>>

同步練習冊答案