【題目】已知集合A由元素a﹣3,2a﹣1,a2﹣4構(gòu)成,且﹣3∈A,求實數(shù)a的值.

【答案】解:∵﹣3∈A,A={a﹣3,2a﹣1,a2﹣4},

∴a﹣3=﹣3或2a﹣1=﹣3或a2﹣4=﹣3.

若a﹣3=﹣3,

則a=0,此時集合A={﹣3,﹣1,﹣4},符合題意.

若2a﹣1=﹣3,則a=﹣1,此時集合A={﹣4,﹣3,﹣3},

不滿足集合中元素的互異性.

若a2﹣4=﹣3,則a=1或a=﹣1(舍去),

當(dāng)a=1時,集合A={﹣2,1,﹣3},符合題意.

綜上可知,a=0,或a=1


【解析】根據(jù)元素和集合的從屬關(guān)系,分情況討論再利用元素的互異性求出a的值即可。
【考點精析】解答此題的關(guān)鍵在于理解元素與集合關(guān)系的判斷的相關(guān)知識,掌握對象與集合的關(guān)系是,或者,兩者必居其一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC= AD=1,CD=

(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣QB﹣C為30°,求線段PM與線段MC的比值t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中a>0.
(Ⅰ)當(dāng)a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最小值.(其中e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= (x∈R,且x≠﹣1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)n∈N*時, ,Tn= + + +…+ . (Ⅰ)求S1 , S2 , T1 , T2;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≤﹣1時,f(x)=x+b,且f(x)的圖象經(jīng)過點(﹣2,0),在y=f(x)的圖象中有一部分是頂點為(0,2),過點(﹣1,1)的一段拋物線.
(1)試求出f(x)的表達(dá)式;
(2)求出f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是(
A.f(x)=2x
B.f(x)=xsinx
C.
D.f(x)=﹣x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工科院校對A,B兩個專業(yè)的男女生人數(shù)進(jìn)行調(diào)查,得到如下的列聯(lián)表:

專業(yè)A

專業(yè)B

總計

女生

12

4

16

男生

38

46

84

總計

50

50

100

(Ⅰ)從B專業(yè)的女生中隨機(jī)抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?
(Ⅱ)能否在犯錯誤的概率不超過0.05的前提下,認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān)系呢?
注:

P(K2≥k)

0.25

0.15

0.10

0.025

k

1.323

2.072

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R的函數(shù)f(x)滿足以下條件:
①對任意實數(shù)x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);
②當(dāng)x>0時,f(x)>0;
③f(1)=1.
(1)求f(2),f(0)的值;
(2)若f(2x)﹣a≥af(x)﹣5對任意x恒成立,求a的取值范圍;
(3)求不等式 的解集.

查看答案和解析>>

同步練習(xí)冊答案