若f(x)是(-a,a)上的可導(dǎo)奇函數(shù),且f'(x)不恒為零,則f'(x)在(-a,a)上( 。
A、必為奇函數(shù)
B、必為偶函數(shù)
C、是非奇非偶函數(shù)
D、可能為奇函數(shù),也可能是偶函數(shù)
考點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:證明f′(x)是(-a,a)內(nèi)的偶函數(shù)即證f′(-x)=f′(x),而函數(shù)f(x)沒(méi)有解析式,故想到運(yùn)用導(dǎo)數(shù)的定義進(jìn)行證明.
解答: 證明:對(duì)任意 x∈(-1,1),f′(-x)=
lim
△x→0
f(-x+△x)-f(-x)
△x
=
lim
△x→0
f(-(x-△x)-f(-x)
△x

由于f(x)為奇函數(shù),∴f[-(x-△x)]=-f(x-△x),f(-x)=-f(x),
于是 f′(-x)=f′(-x)=
lim
△x→0
-f(x-△x)+f(x)
△x
=
lim
△x→0
f(x-△x)-f(x)
△x
=f′(x)
因此f′(-x)=f′(x)即f′(x)是(-1,1)內(nèi)的偶函數(shù).
故選:B.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的定義以及函數(shù)奇偶性的判斷,關(guān)鍵是正確利用導(dǎo)數(shù)的定義,函數(shù)奇偶性的判斷方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

參數(shù)方程為
x=
t
+1
y=1-2
t
(t為參數(shù))的曲線C的普通方程為(  )
A、y=-2x+3
B、y=-2x+3(x≥0)
C、y=-2x+3(x>1)
D、y=-2x+3(x≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),f(x1)≤f(x2),我們稱f(x)在[a,b]上為不減函數(shù).已知f(x)是定義在[0,1]上的不減函數(shù),且滿足f(0)=0,f(1-x)=1-f(x),f(1-
1
3
x)=1-
1
2
f(x),則f(
7
8
)的值為(  )
A、1
B、
3
4
C、
5
6
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線:x-4y=0與圓:
x=2cosθ
y=2sinθ
,(θ為參數(shù))的位置關(guān)系是( 。
A、相切B、相離
C、直線過(guò)圓心D、相交但直線不過(guò)圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈R,則|x|<4成立的一個(gè)必要不充分條件是( 。
A、-3<x<3
B、0<x<2
C、x<4
D、x2<16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若[x]表示不超過(guò)x的最大整數(shù),畫(huà)出y=[x](-3≤x≤3)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=a,an+1=c-
1
an

(Ⅰ)設(shè)a=c=2,bn=
1
an-1
,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)a=1,求證:{an}是遞增數(shù)列的充分必要條件是c>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=3+2sin(
π
3
-2x),x∈(0,π)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案