在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E為AB的中點.
(Ⅰ)求證:AN∥平面MEC;
(Ⅱ)在線段AM上是否存在點P,使二面角P-EC-D的大小為數(shù)學(xué)公式?若存在,求出AP的長h;若不存在,請說明理由.

解:(I)CM與BN交于F,連接EF.
由已知可得四邊形BCNM是平行四邊形,
所以F是BN的中點.
因為E是AB的中點,
所以AN∥EF.…(7分)
又EF?平面MEC,AN?平面MEC,
所以AN∥平面MEC.…(9分)
(II)由于四邊形ABCD是菱形,E是AB的中點,可得DE⊥AB.
又四邊形ADNM是矩形,面ADNM⊥面ABCD,∴DN⊥面ABCD,
如圖建立空間直角坐標(biāo)系D-xyz,則D(0,0,0),E(,0,0),C(0,2,0),P(,-1,h),
=(,-2,0),=(0,-1,h),設(shè)平面PEC的法向量為=(x,y,z).
,∴
令y=h,∴=(2h,h,),又平面ADE的法向量=(0,0,1),
∴cos<>==<1,
∴在線段AM上是否存在點P,使二面角P-EC-D的大小為
分析:(I)利用CM與BN交于F,連接EF.證明AN∥EF,通過直線與平面平行的判定定理證明AN∥平面MEC;
(II)對于存在性問題,可先假設(shè)存在,即假設(shè)x在線段AM上是否存在點P,使二面角P-EC-D的大小為.再通過建立空間直角坐標(biāo)系,求出相關(guān)點的坐標(biāo),結(jié)合向量的數(shù)量積求出二面角P-EC-D的大小,若出現(xiàn)矛盾,則說明假設(shè)不成立,即不存在;否則存在.
點評:本題考查存在性問題,直線與平面平行的判斷,二面角的求法,考查空間想象能力與計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD、ADEF、ABGF均為全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求證:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,平行四邊形ABCD的頂點都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F(xiàn)分別為BP,CP的中點.
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中點.
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)在EB上是否存在一點P,使得∠CPD最大?若存在,請求出∠CPD的正切值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)線段ED上是否存在點Q,使平面EAC⊥平面QBC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中點. 
(1)求證:CM⊥平面ABDE;
(2)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案