如圖,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱.
(Ⅰ)若點(diǎn)的坐標(biāo)為,求的值;
(Ⅱ)若橢圓上存在點(diǎn),使得,求的取值范圍.

(I) ;(II) .

解析試題分析:(I)利用中點(diǎn)坐標(biāo)公式,求M坐標(biāo),代入橢圓方程即可求m;(II)設(shè),表示出P坐標(biāo),再利用垂直條件寫關(guān)系式,求的取值范圍.
試題解析:(Ⅰ)解:依題意,是線段的中點(diǎn),

因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/f5/5/1iddw2.png" style="vertical-align:middle;" />,,
所以 點(diǎn)的坐標(biāo)為.2分
由點(diǎn)在橢圓上,   
所以 ,                                             4分
解得 .                                                   5分
(Ⅱ)解:設(shè),則 ,且.     ①        6分
因?yàn)?是線段的中點(diǎn),
所以 .                                            7分
因?yàn)?,
所以 .    ②                            8分
由 ①,② 消去,整理得 .                       10分
所以 ,                    12分
當(dāng)且僅當(dāng) 時(shí),上式等號(hào)成立.                        
所以 的取值范圍是.                                13分
考點(diǎn):1.中點(diǎn)坐標(biāo)公式;2.基本不等式,分離常數(shù);3.轉(zhuǎn)化思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知曲線上任意一點(diǎn)到點(diǎn)的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),軸上的兩點(diǎn),過點(diǎn)分別作軸的垂線,與曲線分別交于點(diǎn),直線與x軸交于點(diǎn),這樣就稱確定了.同樣,可由確定了.現(xiàn)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長(zhǎng),橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).

(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓 ,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,且其短軸上的一個(gè)端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)作直線,使得與橢圓都只有一個(gè)交點(diǎn),試判斷是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓.過點(diǎn)作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長(zhǎng)為,被圓截得的弦長(zhǎng)為,問:是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)為 ,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且兩焦點(diǎn)和短軸的兩端構(gòu)成邊長(zhǎng)為的正方形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線交與橢圓于, ,且使,使得的垂心,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A、B、C是橢圓W:上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(I)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左右焦點(diǎn)坐標(biāo)分別是,離心率,直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,分別是橢圓的左、右焦點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)是圓的一條直徑的兩個(gè)端點(diǎn)。
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線被橢圓和圓所截得的弦長(zhǎng)分別為,。當(dāng)最大時(shí),求直線的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案