已知橢圓的右焦點(diǎn)為,為上頂點(diǎn),為坐標(biāo)原點(diǎn),若△的面積為,且橢圓的離心率為.
(1)求橢圓的方程;
(2)是否存在直線交橢圓于,兩點(diǎn), 且使點(diǎn)為△的垂心?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
(1);(2)存在直線,且直線的方程為.
【解析】
試題分析:(1)由題意可得的兩個(gè)關(guān)系式即,解之即可得橢圓的方程;(2)先假設(shè)存在直線與橢圓交于,兩點(diǎn),且橢圓的右焦點(diǎn)恰為的垂心.設(shè)出,坐標(biāo),由(1)中所求橢圓方程,可得,點(diǎn)坐標(biāo),利用點(diǎn)恰為的垂心,則,就可得到含,,,的等式,再設(shè)直線的方程為,代入橢圓方程,求,,,,均用含的式子表示,再代入上面所求等式中,求,若能求出,則存在直線與橢圓交于,兩點(diǎn),且橢圓的右焦點(diǎn)恰為的垂心,若求不出,則不存在直線與橢圓交于,兩點(diǎn),且橢圓的右焦點(diǎn)恰為的垂心.
試題解析:(1)由題意可得,解得,,故橢圓方程為.
(2)假設(shè)存在直線交橢圓于,兩點(diǎn),且為△的垂心,設(shè),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111720342009297100/SYS201411172034244055511738_DA/SYS201411172034244055511738_DA.033.png">,,故.于是設(shè)直線的方程為,
由得.
由,得, 且,.
由題意應(yīng)有,又,
故,得.
即.
整理得.
解得或.經(jīng)檢驗(yàn),當(dāng)時(shí),△不存在,故舍去.
當(dāng)時(shí),所求直線存在,且直線的方程為.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省紹興市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
的值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)R)為奇函數(shù),則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題
橢圓的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,則該橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
若圓與圓的公共弦的長(zhǎng)為8,則___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
直線與曲線的交點(diǎn)個(gè)數(shù)為( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
在正方體中,異面直線和所成的角的大小為_(kāi)_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省溫州市十校聯(lián)合體高三上學(xué)期期初聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,等邊△中,,則 _________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com