如圖:在橢圓+=1中有一內(nèi)接矩形ABCD(四個(gè)頂點(diǎn)都在橢圓上),A點(diǎn)在第一象限內(nèi).當(dāng)內(nèi)接矩形ABCD的面積最大時(shí),點(diǎn)A的坐標(biāo)是( )

A.(,2
B.(,2)
C.(
D.(1,
【答案】分析:先根據(jù)橢圓參數(shù)方程設(shè)出A點(diǎn)坐標(biāo),則橢圓+=1的內(nèi)接矩形ABCD的面積可用A點(diǎn)坐標(biāo)表示,就把矩形ABCD的面積用含參數(shù)θ的式子表示,再利用正弦函數(shù)的有界性判斷θ為何值時(shí),面積有最大值.
解答:解:∵A點(diǎn)在橢圓+=1上,∴可設(shè)A(5cosθ,4sinθ)
∴矩形ABCD的面積為4×(5cosθ)(4sinθ)=80cosθsinθ=40sin2θ
∵sin2θ≤1,且當(dāng)2θ=時(shí)等號(hào)成立,
∴40sin2θ≤40,且當(dāng)2θ=時(shí)等號(hào)成立,
∴當(dāng)2θ=,即θ=時(shí),橢圓+=1的內(nèi)接矩形ABCD面積有最大值,此時(shí)A(
故選A
點(diǎn)評(píng):本題主要考查橢圓的參數(shù)方程在求最值時(shí)的應(yīng)用,其中結(jié)合了三角函數(shù)的有界性,屬于綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在橢圓C中,點(diǎn)F1是左焦點(diǎn),A(a,0),B(0,b)分別為右頂點(diǎn)和上頂點(diǎn),點(diǎn)O為橢圓的中心.又點(diǎn)P在橢圓上,且滿足條件:OP∥AB,點(diǎn)H是點(diǎn)P在x軸上的射影.
(1)求證:當(dāng)a取定值時(shí),點(diǎn)H必為定點(diǎn);
(2)如果點(diǎn)H落在左頂點(diǎn)與左焦點(diǎn)之間,試求橢圓離心率的取值范圍;
(3)如果以O(shè)P為直徑的圓與直線AB相切,且凸四邊形ABPH的面積等于3+
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖:在橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1中有一內(nèi)接矩形ABCD(四個(gè)頂點(diǎn)都在橢圓上),A點(diǎn)在第一象限內(nèi).當(dāng)內(nèi)接矩形ABCD的面積最大時(shí),點(diǎn)A的坐標(biāo)是


  1. A.
    數(shù)學(xué)公式,2數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式,2)
  3. C.
    數(shù)學(xué)公式,數(shù)學(xué)公式
  4. D.
    (1,數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在橢圓C中,點(diǎn)F1是左焦點(diǎn),A(a,0),B(0,b)分別為右頂點(diǎn)和上頂點(diǎn),點(diǎn)O為橢圓的中心.又點(diǎn)P在橢圓上,且滿足條件:OP∥AB,點(diǎn)H是點(diǎn)P在x軸上的射影.
(1)求證:當(dāng)a取定值時(shí),點(diǎn)H必為定點(diǎn);
(2)如果點(diǎn)H落在左頂點(diǎn)與左焦點(diǎn)之間,試求橢圓離心率的取值范圍;
(3)如果以O(shè)P為直徑的圓與直線AB相切,且凸四邊形ABPH的面積等于數(shù)學(xué)公式,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年浙江省杭州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,在橢圓C中,點(diǎn)F1是左焦點(diǎn),A(a,0),B(0,b)分別為右頂點(diǎn)和上頂點(diǎn),點(diǎn)O為橢圓的中心.又點(diǎn)P在橢圓上,且滿足條件:OP∥AB,點(diǎn)H是點(diǎn)P在x軸上的射影.
(1)求證:當(dāng)a取定值時(shí),點(diǎn)H必為定點(diǎn);
(2)如果點(diǎn)H落在左頂點(diǎn)與左焦點(diǎn)之間,試求橢圓離心率的取值范圍;
(3)如果以O(shè)P為直徑的圓與直線AB相切,且凸四邊形ABPH的面積等于,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案