【題目】已知拋物線的焦點為,過點的直線交拋物線于、兩點,以線段為直徑的圓交軸于、兩點,設(shè)線段的中點為,則( )
A.
B.若,則直線的斜率為
C.若拋物線上存在一點到焦點的距離等于,則拋物線的方程為
D.若點到拋物線準線的距離為,則的最小值為
【答案】ACD
【解析】
通過設(shè)直線,與拋物線方程聯(lián)立,得到根與系數(shù)的關(guān)系,,選項均可轉(zhuǎn)化為坐標的運算,代入根與系數(shù)的關(guān)系,得到結(jié)果,C選項可直接根據(jù)焦半徑公式,計算并判斷.
設(shè),,
設(shè)直線,與拋物線方程聯(lián)立
,,,,
A.,
故A正確;
B.根據(jù)焦半徑公式可知,,
,
由條件可知,,解得:,
直線的斜率,故B不正確;
C.由題意可知,解得:,
則拋物線方程是,故C正確;
D.由題意可知,所以,
由圓的幾何性質(zhì)可知,
是點到軸的距離 ,,
由分析可知,,
且,,
得, ,
所以,
當(dāng)時,取得最小值,
此時直線:,故D正確.
故選:ACD
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),則下列說法正確的是( )
A.若,則的圖象上存在唯一一對關(guān)于原點對稱的點
B.存在實數(shù)使得的圖象上存在兩對關(guān)于原點對稱的點
C.不存在實數(shù)使得的圖象上存在兩對關(guān)于軸對稱的點
D.若的圖象上存在關(guān)于軸對稱的點,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】Keep是一款具有社交屬性的健身APP,致力于提供健身教學(xué)、跑步、騎行、交友及健身飲食指導(dǎo)、裝備購買等一站式運動解決方案.Keep可以讓你隨時隨地進行鍛煉,記錄你每天的訓(xùn)練進程.不僅如此,它還可以根據(jù)不同人的體質(zhì),制定不同的健身計劃.小明根據(jù)Keep記錄的2019年1月至2019年11月期間每月跑步的里程(單位:十公里)數(shù)據(jù)整理并繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )
A.月跑步里程最小值出現(xiàn)在2月
B.月跑步里程逐月增加
C.月跑步里程的中位數(shù)為5月份對應(yīng)的里程數(shù)
D.1月至5月的月跑步里程相對于6月至11月波動性更小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新冠病毒疫情爆發(fā)期間,口罩成為了個人的必需品.已知某藥店有4種不同類型的口罩,,,,其中型口罩僅剩1只(其余3種庫存足夠).今甲、乙等5人先后在該藥店各購買了1只口罩,統(tǒng)計發(fā)現(xiàn)他們恰好購買了3種不同類型的口罩,則所有可能的購買方式共有( )
A.330種B.345種C.360種D.375種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,、分別為橢圓長軸的左、右端點,為直線上異于點的任意一點,連接交橢圓于點.
(1)若,求直線的方程;
(2)是否存在軸上的定點使得以為直徑的圓恒過與的交點?如果存在,請求出定點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面底面,是等邊三角形,底面是菱形,且,為棱的中點,為菱形的中心,下列結(jié)論正確的有( )
A.直線與平面平行B.直線與直線垂直
C.線段與線段長度相等D.與所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系xOy中,曲線C的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos().
(1)求曲線C和直線l的直角坐標方程;
(2)若直線l交曲線C于A,B兩點,交x軸于點P,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com