精英家教網 > 高中數學 > 題目詳情
設AB是橢圓
x2
a2
+
y2
b2
=1
的不垂直于對稱軸的弦,M為AB的中點,O為坐標原點,則kAB•kOM=
 
分析:設出A,B兩點的坐標求出中點M的坐標,根據題意表示出kABkOM=
y
2
2
-
y
1
2
x
2
2
-
x
1
2
,再利用b2x12+a2y12=a2b2,b2x22+a2y22=a2b2,代入可得答案.
解答:解:由題意得:設A(x1,y1)B(x2,y2),則中點M(
x1x2
2
,
y1y2
2
),
所以kAB=
y2y1
x2-x1
,kOM=
y2y1 
x2+x1
,
所以kAB•kOM=
y
2
2
-
y
2
1
x
2
2
-
x
2
1

又因為點A(x1,y1)B(x2,y2)在橢圓上
所以b2x12+a2y12=a2b2,b2x22+a2y22=a2b2,
所以得b2(x22-x12)+a2(y22-y12)=0,
所以
y
2
2
-
y
2
1
x
2
2
-
x
2
1
=-
b2
a2

故答案為-
b2
a2
點評:解決此類題目的關鍵是利用設而不求的方法,即設出點的坐標而不求點的坐標直接根據題意寫出表達式進行整體求解,此種方法在圓錐曲線部分常見.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的長軸,若把長軸2010等分,過每個分點作AB的垂線,交橢圓的上半部分于P1,P2,…,P2009,F(xiàn)1為橢圓的左焦點,則|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|的值是( 。
A、2008a
B、2009a
C、2010a
D、2011a

查看答案和解析>>

科目:高中數學 來源: 題型:

設AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的長軸,若把AB100等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點,則|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是(  )
A、98aB、99a
C、100aD、101a

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓的方程為x2+y2=4,過點M(2,4)作圓的兩條切線,切點分別為A1、A2,直線A1A2恰好經過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)垂直于x軸的一條弦,AB所在直線的方程為x=m(|m|<a且m≠0),P是橢圓上異于A、B的任意一點,直線AP、BP分別交定直線l:x=
a2
m
于兩點Q、R,求證
OQ
OR
>4

查看答案和解析>>

科目:高中數學 來源:安徽模擬 題型:單選題

設AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的長軸,若把長軸2010等分,過每個分點作AB的垂線,交橢圓的上半部分于P1,P2,…,P2009,F(xiàn)1為橢圓的左焦點,則|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|的值是( 。
A.2008aB.2009aC.2010aD.2011a

查看答案和解析>>

同步練習冊答案