若非負實數(shù)ab滿足a+b=1,記y1=ax1+bx2,y2=bx1+ax2(x1、x2>0)

<

求證:y1y2x1x2

 

答案:
解析:

證明:y1y2=(a2+b2)x1x2+ab(x12+x22)≥(a2+b2)x1x2+ab·2x1x2

=(a+b)2x1x2=x1x2,(∵ a+b=1)

y1y2=(12ab)x1x2+ab(x12+x22)

<

=ab(x1x2)2+x1x2x1x2

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)定義在R上的函數(shù)f(x)滿足f(3)=1,f(-2)=3,f′(x)為f(x)的導函數(shù),已知y=f′(x)的圖象如圖所示,且f′(x)有且只有一個零點,若非負實數(shù)a,b滿足f(2a+b)≤1,f(-a-2b)≤3,則
b+2
a+1
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

若非負實數(shù)a、b滿足a+b=1,記y1=ax1+bx2,y2=bx1+ax2(x1、x2>0),

<

求證:y1y2x1x2

 

查看答案和解析>>

科目:高中數(shù)學 來源:大連一模 題型:單選題

定義在R上的函數(shù)f(x)滿足f(3)=1,f(-2)=3,f′(x)為f(x)的導函數(shù),已知y=f′(x)的圖象如圖所示,且f′(x)有且只有一個零點,若非負實數(shù)a,b滿足f(2a+b)≤1,f(-a-2b)≤3,則
b+2
a+1
的取值范圍是( 。
A.[
4
5
,3]
B.(0,
4
5
]∪[3,+∞)
C.[
4
5
,5]
D.(0,
4
5
]∪[5,+∞)
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:2013年遼寧省大連市高考數(shù)學一模試卷(理科)(解析版) 題型:選擇題

定義在R上的函數(shù)f(x)滿足f(3)=1,f(-2)=3,f′(x)為f(x)的導函數(shù),已知y=f′(x)的圖象如圖所示,且f′(x)有且只有一個零點,若非負實數(shù)a,b滿足f(2a+b)≤1,f(-a-2b)≤3,則的取值范圍是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年遼寧省大連市高考數(shù)學一模試卷(文科)(解析版) 題型:選擇題

定義在R上的函數(shù)f(x)滿足f(3)=1,f(-2)=3,f′(x)為f(x)的導函數(shù),已知y=f′(x)的圖象如圖所示,且f′(x)有且只有一個零點,若非負實數(shù)a,b滿足f(2a+b)≤1,f(-a-2b)≤3,則的取值范圍是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案