對于給定的函數(shù),有下列四個結(jié)論:

的圖象關(guān)于原點對稱;    ②在R上是增函數(shù);

的圖象關(guān)于軸對稱;  ④的最小值為0;

其中正確的是     ★    (填寫正確的序號)

 

【答案】

①②③④

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)(理)對于給定的非零實數(shù)a,求最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立;
(Ⅲ)(理)在(Ⅱ)的條件下,當(dāng)a為何值時,M(a)最小,并求出M(a)的最小值.
(Ⅱ)(文)求最小的實數(shù)b,使得x∈[b,1]時,f(x)≥-2都成立;
(Ⅲ)(文)若存在實數(shù)a,使得x∈[b,1]時,-2≤f(x)≤3b都成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,則稱f(x)為定義在D上的下凸函數(shù).
(1)試判斷函數(shù)g(x)=2x(x∈R),k(x)=
1x
 (x<0)
是否為各自定義域上的下凸函數(shù),并說明理由;
(2)若h(x)=px2(x∈R)是下凸函數(shù),求實數(shù)p的取值范圍;
(3)已知f(x)是R上的下凸函數(shù),m是給定的正整數(shù),設(shè)f(0)=0,f(m)=2m,記Sf=f(1)+f(2)+f(3)+…+f(m),對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有數(shù)學(xué)公式
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)(理)對于給定的非零實數(shù)a,求最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立;
(Ⅲ)(理)在(Ⅱ)的條件下,當(dāng)a為何值時,M(a)最小,并求出M(a)的最小值.
(Ⅱ)(文)求最小的實數(shù)b,使得x∈[b,1]時,f(x)≥-2都成立;
(Ⅲ)(文)若存在實數(shù)a,使得x∈[b,1]時,-2≤f(x)≤3b都成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年上海市浦東新區(qū)建平中學(xué)高三(上)摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax2+4x-2,若對任意x1,x2∈R且x1≠x2,都有
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)(理)對于給定的非零實數(shù)a,求最小的負(fù)數(shù)M(a),使得x∈[M(a),0]時,-4≤f(x)≤4都成立;
(Ⅲ)(理)在(Ⅱ)的條件下,當(dāng)a為何值時,M(a)最小,并求出M(a)的最小值.
(Ⅱ)(文)求最小的實數(shù)b,使得x∈[b,1]時,f(x)≥-2都成立;
(Ⅲ)(文)若存在實數(shù)a,使得x∈[b,1]時,-2≤f(x)≤3b都成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,則稱f(x)為定義在D上的下凸函數(shù).
(1)試判斷函數(shù)g(x)=2x(x∈R),k(x)=
1
x
 (x<0)
是否為各自定義域上的下凸函數(shù),并說明理由;
(2)若h(x)=px2(x∈R)是下凸函數(shù),求實數(shù)p的取值范圍;
(3)已知f(x)是R上的下凸函數(shù),m是給定的正整數(shù),設(shè)f(0)=0,f(m)=2m,記Sf=f(1)+f(2)+f(3)+…+f(m),對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

同步練習(xí)冊答案