8.已知a>0,設(shè)函數(shù)f(x)=$\frac{{2015}^{x+1}+2014}{{2015}^{x}+1}$(x∈[-a,a])的最大值為M,最小值為N,那么M+N=( 。
A.2008B.2009C.4028D.4029

分析 通過分離分子可得f(x)=2015-$\frac{1}{1+201{5}^{x}}$,計算可得f(x)+f(-x)=4029,利用函數(shù)y=f(x)的單調(diào)性計算可得結(jié)果.

解答 解:f(x)=$\frac{{2015}^{x+1}+2014}{{2015}^{x}+1}$=2015-$\frac{1}{1+201{5}^{x}}$
f(-x)=2015-$\frac{1}{1+201{5}^{-x}}$,
則f(x)+f(-x)=4030-($\frac{1}{1+201{5}^{x}}$+$\frac{1}{1+201{5}^{-x}}$)
=4030-$\frac{1+201{5}^{x}}{1+201{5}^{x}}$=4030-1=4029,
又y=f(x)是[-a,a]上的增函數(shù),
∴M+N=f(a)+f(-a)=4029.
故選:D.

點評 本題考查函數(shù)的單調(diào)性的判斷和運用,注意解題方法的積累,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.直線x-y+2=0和橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.四條線段順次首尾相連,它們最多確定的平面?zhèn)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若關(guān)于x的方程sin2x-(2+a)sinx+2a=0,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]上有兩個實數(shù)根.
(1)設(shè)t=sinx,利用三角函數(shù)線,求t的取值范圍;
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1a2…an=1-an,n∈N•.
(1)證明:{$\frac{1}{1{-a}_{n}}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)記Tn=a1a2…an(n∈N*),Sn=${{T}_{1}}^{2}$+${{T}_{2}}^{2}$+…+${{T}_{n}}^{2}$,證明:an+1-$\frac{1}{2}$<Sn<$\frac{2}{3}$an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.去年某工廠的產(chǎn)值月平均增長率為a,求該工廠去年產(chǎn)值的年增長率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知Rt△ABC的斜邊兩端點分別是B(0,4),C(0,-2),則頂點A的軌跡方程是x2+y2-2y-8=0(x≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(n)=cos($\frac{n}{2}$π+$\frac{π}{4}$)(n∈N*),求f(1)+f(2)+f(3)+…+f(2015)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$y=\frac{{\sqrt{x+3}}}{x}+lg({2-x})$的定義域為[-3,0)∪(0,2).

查看答案和解析>>

同步練習(xí)冊答案