已知直線,圓
(1)判斷直線和圓的位置關(guān)系;
(2)若直線和圓相交,求相交弦長(zhǎng)最小時(shí)的值.
(1)直線和圓相交;(2)。
本試題主要是考查了直線與圓的位置關(guān)系綜合運(yùn)用。
(1)因?yàn)槔脠A心到直線的距離與圓的半徑的關(guān)系,來確定結(jié)論。
(2)假設(shè)直線和圓相交于點(diǎn),由相交弦長(zhǎng)公式,其中為圓心到直線的距離,根據(jù)d的最大時(shí)的情況得到結(jié)論。
解:(1)直線,
即為
則直線經(jīng)過直線的交點(diǎn)
,所以點(diǎn)在圓的內(nèi)部,所以直線和圓相交;
(2)假設(shè)直線和圓相交于點(diǎn),由相交弦長(zhǎng)公式,其中為圓心到直線的距離,有公式可知,
當(dāng)最大時(shí),相交弦長(zhǎng)最小,而由(1)知,
直線過定點(diǎn),所以,即,又,所以,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是直角三角形的三邊(為斜邊), 則圓被直線所截得的弦長(zhǎng)等于__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于直線對(duì)稱的圓的標(biāo)準(zhǔn)方程是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)直線過點(diǎn)其斜率為1,且與圓相切,則的值為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

上的動(dòng)點(diǎn)到直線的最短距離為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以下敘述正確的是(      )
A.平面直角坐標(biāo)系下的每條直線一定有傾斜角與法向量,但是不一定都有斜率;
B.平面上到兩個(gè)定點(diǎn)的距離之和為同一個(gè)常數(shù)的軌跡一定是橢圓;
C.直線上有且僅有三個(gè)點(diǎn)到圓的距離為2;
D.點(diǎn)是圓上的任意一點(diǎn),動(dòng)點(diǎn)為坐標(biāo)原點(diǎn))的比為,那么的軌跡是有可能是橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
求過直線和圓的交點(diǎn),且滿足下列條件之一的圓的方程.   (1)過原點(diǎn);       (2)有最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分) 已知圓內(nèi)接于此圓,點(diǎn)的坐標(biāo)為坐標(biāo)原點(diǎn).
(Ⅰ)若的重心是,求直線的方程;
(Ⅱ)若直線與直線的傾斜角互補(bǔ),求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P在圓x2+y2=1上運(yùn)動(dòng),過點(diǎn)P作x軸的垂線,垂足為D,點(diǎn)M在DP的延長(zhǎng)線上,且有|DP|=|MP|.(1)求M點(diǎn)的軌跡方程C;(2)已知直線l過點(diǎn)(0,),且斜率為1,求l與C相交所得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案