已知橢圓C:(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為k(k>0)的直線于C相交于A、B兩點(diǎn),若.則k=( )
A.1
B.
C.
D.2
【答案】分析:設(shè)A(x1,y1),B(x2,y2),根據(jù)求得y1和y2關(guān)系根據(jù)離心率設(shè),b=t,代入橢圓方程與直線方程聯(lián)立,消去x,根據(jù)韋達(dá)定理表示出y1+y2和y1y2,進(jìn)而根據(jù)y1和y2關(guān)系求得k.
解答:解:A(x1,y1),B(x2,y2),
,∴y1=-3y2,
,設(shè),b=t,
∴x2+4y2-4t2=0,直線AB方程為.代入消去x,

,,
解得,
故選B
點(diǎn)評:本題主要考查了直線與圓錐曲線的綜合問題.此類題問題綜合性強(qiáng),要求考生有較高地轉(zhuǎn)化數(shù)學(xué)思想的運(yùn)用能力,能將已知條件轉(zhuǎn)化到基本知識的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三(上)期末質(zhì)量檢查一級達(dá)標(biāo)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線l過橢圓C的右焦點(diǎn)F2,交橢圓于點(diǎn)A、B.
(。┤魸M足(O為坐標(biāo)原點(diǎn)),求△AOB的面積;
(ⅱ)當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在一點(diǎn)P,使得直線PA、PB的傾斜角互為補(bǔ)角?若存在,求出P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷解析版) 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)

(I)求橢圓C的離心率:

(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆甘肅武威六中高二12月學(xué)段檢測文科數(shù)學(xué)試題(解析版) 題型:解答題

(12分)已知橢圓C:(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.

 ①求橢圓C的方程.

 ②當(dāng)⊿AMN的面積為時(shí),求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第七次月考理科數(shù)學(xué) 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點(diǎn)A,B且線段AB的垂直平分線過定點(diǎn)C(,0)求實(shí)數(shù)k的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:選擇題

已知橢圓C:(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為kk>0)的直線與橢圓C相交于A、B兩點(diǎn),若。則 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步練習(xí)冊答案