【題目】如圖,在以,,,為頂點(diǎn)的五面體中,平面平面,,四邊形為平行四邊形,且.

1)求證:

2)若,,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)過(guò),連接,由平面平面,得平面,因此.證明平面,即可證明結(jié)論;

(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,代入向量的夾角公式,即可得答案;

1)過(guò),連接,由平面平面,得平面,因此.

,,,,

由已知為等腰直角三角形,

因?yàn)?/span>,又,,

平面,.

2平面,平面,平面,

平面平面,.

由(1)可得,兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,

由題設(shè)可得,進(jìn)而可得,,,,.

設(shè)平面的法向量,則,,可取.

設(shè)平面的法向量,則,,可取.

.

二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=axexgx)=x2+2x+b,若曲線yfx)與曲線ygx)都過(guò)點(diǎn)P1,c).且在點(diǎn)P處有相同的切線l

(Ⅰ)求切線l的方程;

(Ⅱ)若關(guān)于x的不等式k[efx]≥gx)對(duì)任意x[1,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓上一點(diǎn)處的切線分別交軸于點(diǎn),以為頂點(diǎn)且以為中心的橢圓記作,直線兩點(diǎn).

1)若橢圓的離心率為,求點(diǎn)坐標(biāo);

2)證明:四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,過(guò)右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為,為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)斜率為的直線與橢圓相交于兩點(diǎn),記面積的最大值為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿足n≥2時(shí),,則稱(chēng)數(shù)列(n)L數(shù)列

1)若,且L數(shù)列,求數(shù)列的通項(xiàng)公式;

2)若,且L數(shù)列為遞增數(shù)列,求k的取值范圍;

3)若,其中p1,記L數(shù)列的前n項(xiàng)和為,試判斷是否存在等差數(shù)列,對(duì)任意n,都有成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某高校全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.

1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和中位數(shù)的值精確到0.01);

2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,的學(xué)生中抽取9名參加座談會(huì).你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,,,,點(diǎn)是棱的中點(diǎn).

1)求證:平面;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,以短軸長(zhǎng)為直徑的圓過(guò)點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且與圓沒(méi)有公共點(diǎn),設(shè)為橢圓上一點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在單位圓Ox2+y21上任取一點(diǎn)Px,y),圓Ox軸正向的交點(diǎn)是A,設(shè)將OA繞原點(diǎn)O旋轉(zhuǎn)到OP所成的角為θ,記x,y關(guān)于θ的表達(dá)式分別為xfθ),ygθ),則下列說(shuō)法正確的是( 。

A.xfθ)是偶函數(shù),ygθ)是奇函數(shù)

B.xfθ)在為增函數(shù),ygθ)在為減函數(shù)

C.fθ+gθ≥1對(duì)于恒成立

D.函數(shù)t2fθ+g2θ)的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案