精英家教網 > 高中數學 > 題目詳情

【題目】下列函數中,在其定義域內既是奇函數又是減函數的是(  )
A.y=﹣x3
B.y=
C.y=x
D.y=

【答案】A
【解析】解:A中,y=﹣x3是定義域R上的奇函數,也是減函數,∴滿足條件;
B中,y=x是定義域(0,+∞)上的減函數,不是奇函數,∴不滿足條件;
C中,y=x是定義域R上的奇函數,但是增函數,∴不滿足條件;
D中,y=是定義域R上的減函數,不是奇函數,∴不滿足條件;
故選:A.
【考點精析】通過靈活運用函數單調性的判斷方法和函數的奇偶性,掌握單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱中,底面ABCD和側面都是矩形,E是CD的中點,,

.

(1)求證:;

(2)若平面與平面所成的銳二面角的大小為,求線段的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠擬造一座平面為長方形,面積為三級污水處理池.由于地形限制,長、寬都不能超過,處理池的高度一定.如果池的四周墻壁的造價為,中間兩道隔墻的造價為,池底的造價為,則水池的長、寬分別為多少米時,污水池的造價最低?最低造價為多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G為BC的中點.

(1)求證:FG平面BED;

(2)求證:平面BED平面AED;

(3)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求實數k的值;
(2)設g(x)=log4(a2x+a),若f(x)=g(x)有且只有一個實數解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,空間幾何體中,四邊形是梯形,四邊形是矩形,且平面平面, , 是線段上的動點.

(1)求證: ;

(2)試確定點的位置,使平面,并說明理由;

(3)在(2)的條件下,求空間幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G為BC的中點.

(1)求證:FG平面BED;

(2)求證:平面BED平面AED;

(3)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 處取得極值,且,曲線處的切線與直線垂直.

(Ⅰ)求的解析式;

(Ⅱ)證明關于的方程至多只有兩個實數根(其中的導函數, 是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,過上一點的切線的方程為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設過點且斜率不為的直線交橢圓于兩點,試問軸上是否存在點,使得?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案