設(shè)函數(shù)f(x)=x3x2+6xa.
(1)對(duì)于任意實(shí)數(shù)xf′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.

(1)-(2)(-∞,2)∪

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調(diào)區(qū)間及極值;
(2)求證:當(dāng)a>ln2-1且x >0時(shí),ex>x2-2ax+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=ln xx2-(a+1)x(a>0,a為常數(shù)).
(1)討論f(x)的單調(diào)性;
(2)若a=1,證明:當(dāng)x>1時(shí),f(x)< x2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導(dǎo)函數(shù).
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關(guān)于x的方程f(x)=|f′(x)|; ?
(3)設(shè)函數(shù)g(x)=,求g(x)在x∈[2,4]時(shí)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)若,設(shè)函數(shù),求的極大值;
(2)設(shè)函數(shù),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)),直線與函數(shù)、的圖象都相切,且與函數(shù)圖象的切點(diǎn)的橫坐標(biāo)為
(1)求直線的方程及的值;
(2)若 [注:的導(dǎo)函數(shù)],求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),試討論方程的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個(gè)極值點(diǎn).
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線yb與函數(shù)yf(x)的圖象有3個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量m=(ex,ln xk),n=(1,f(x)],mn(k為常數(shù)),曲線yf(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=-x2+2ax(a為正實(shí)數(shù)),若對(duì)于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若在x=處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明

查看答案和解析>>

同步練習(xí)冊(cè)答案