已知函數(shù)
(1)若,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.

(1),(2)當(dāng)時,上單調(diào)遞減,若,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.若,在上單調(diào)遞增.(3).

解析試題分析:(1)利用導(dǎo)數(shù)幾何意義求切線斜率,根據(jù)點斜式寫切線過程. 函數(shù)的定義域為,.當(dāng)時,函數(shù),,.所以曲線在點處的切線方程為,即.(2)利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,關(guān)鍵明確導(dǎo)函數(shù)零點與定義域的關(guān)系,正確判斷導(dǎo)數(shù)符號. 當(dāng)時,,,當(dāng)時,若,由,即,得;由,即,得.若,,.(3)存在性問題,利用變量分離轉(zhuǎn)化為求函數(shù)最值. 因為,等價于.令,等價于“當(dāng) 時,”. 因為當(dāng)時,,所以,因此.
函數(shù)的定義域為.   1分
(1)當(dāng)時,函數(shù),
所以曲線在點處的切線方程為,
.         4分
(2)函數(shù)的定義域為
1.當(dāng)時,上恒成立,
上恒成立,此時上單調(diào)遞減.     5分
2.當(dāng)時,,
(。┤,
,即,得;      6分
,即,得.         7分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當(dāng)a=0時,求曲線y=f(x)在點(1,f(1))處的切線的斜率;
(2)當(dāng)a≠時,求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)(2011•廣東)設(shè)a>0,討論函數(shù)f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)當(dāng)時,證明:;
(2)若,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設(shè)
① 當(dāng)時,對任意,都有成立,求的最大值;
② 設(shè)的導(dǎo)函數(shù).若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)討論的單調(diào)性;
(2) 若不等式恒成立,求實數(shù)取值范圍;
(3)若方程存在兩個異號實根,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)a=l時,求的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實數(shù)a的取值范圍;
(3)令,是否存在實數(shù)a,當(dāng)(e是自然對數(shù)的底數(shù))時,函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中的導(dǎo)函數(shù).證明:對任意

查看答案和解析>>

同步練習(xí)冊答案