已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若不等式有解,求實(shí)數(shù)m的取值菹圍;
(3)證明:當(dāng)a=0時(shí),

(1) 參考解析;(2);(3)參考解析

解析試題分析:(1)由于 ,.需求的單調(diào)區(qū)間,通過對(duì)函數(shù)求導(dǎo),在討論的范圍即可得函數(shù)的單調(diào)區(qū)間.
(2)本小題可等價(jià)轉(zhuǎn)化為,求實(shí)數(shù)m的取值菹圍,使得有解,等價(jià)于小于函數(shù),的最小值.所以對(duì)函數(shù)求導(dǎo),由導(dǎo)函數(shù)的解析式,通過應(yīng)用基本不等式,即可得到函數(shù)的單調(diào)性,從而得到最小值.即可得到結(jié)論.
(3)由于當(dāng)時(shí),.本小題解法通過構(gòu)造.即兩個(gè)函數(shù)的差,通過等價(jià)證明函數(shù)的最小值與函數(shù)的最大值的差大于2.所以對(duì)兩個(gè)函數(shù)分別研究即可得到結(jié)論.
(1) 的定義域是,當(dāng)時(shí),,所以在單調(diào)遞增;當(dāng)時(shí),由,解得.則當(dāng)時(shí). ,所以單調(diào)遞增.當(dāng)時(shí),,所以單調(diào)遞減.綜上所述:當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞增,在單調(diào)遞減.
(2)由題意:有解,即有解,因此只需有解即可,設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/7/o7016.png" style="vertical-align:middle;" />,且時(shí),所以,即.故上遞減,所以
(3)當(dāng)時(shí),,的公共定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d4/7/1zbfa4.png" style="vertical-align:middle;" />,,設(shè),.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/d/1ny6q2.png" style="vertical-align:middle;" />,單調(diào)遞增. .又設(shè),.當(dāng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/f/l7nax2.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù),
(1)求的值;
( 2) 判斷并證明函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)若,求函數(shù)的定義域和極值;
(2)當(dāng)時(shí),試確定函數(shù)的零點(diǎn)個(gè)數(shù),并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如果函數(shù)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若交點(diǎn)個(gè)數(shù)為2013,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)上的值域;
(2)設(shè),若存在,使得以為三邊長(zhǎng)的三角形不存在,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,過點(diǎn)且傾斜角為的直線交橢圓于兩點(diǎn),橢圓的離心率為,
(1)求橢圓的方程;
(2)若是橢圓上不同兩點(diǎn),軸,圓過點(diǎn),且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱圓為該橢圓的內(nèi)切圓.問橢圓是否存在過點(diǎn)的內(nèi)切圓?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:對(duì)于函數(shù),若存在非零常數(shù),使函數(shù)對(duì)于定義域內(nèi)的任意實(shí)數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個(gè)函數(shù),使為常數(shù),)為廣義周期函數(shù),并求出它的一個(gè)廣義周期和周距
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/1/aujvk.png" style="vertical-align:middle;" />時(shí),求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)在區(qū)間 上有最大值,最小值.
(1)求函數(shù)的解析式;
(2)設(shè).若時(shí)恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案