精英家教網 > 高中數學 > 題目詳情
已知:函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間上有最大值4,最小值1,設函數
(1)求a、b的值及函數f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在時恒成立,求實數k的取值范圍.
【答案】分析:(1)由二次函數g(x)=ax2-2ax+1+b的對稱軸為x=1,由題意得,或 ,解得a、b的值,即可得到函數f(x)的解析式.
(2)不等式即 ,在時,設,則k≤(t-1)2,
根據(t-1)2min>0,求得實數k的取值范圍.
解答:解:(1)由于二次函數g(x)=ax2-2ax+1+b的對稱軸為x=1,
由題意得:1°,解得
或  2°,解得.(舍去) 
∴a=1,b=0…(6分)
故g(x)=x2-2x+1,. …(7分)
(2)不等式f(2x)-k•2x≥0,即,∴.…(10分)
時,設,∴k≤(t-1)2
由題意可得,函數f(x)的定義域為{x|x≠0},故t≠1,即 ≤t≤2,且t≠1.
∵(t-1)2min>0,∴k≤0,即實數k的取值范圍為(-∞,0].…(14分)
點評:本題主要考查求二次函數在閉區(qū)間上的最值,用待定系數法求函數的解析式,函數的恒成立問題,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•虹口區(qū)二模)已知:函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間
2,3
上有最大值4,最小值1,設函數f(x)=
g(x)
x

(1)求a、b的值及函數f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈
-1,1
時恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•虹口區(qū)二模)已知:函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設函數f(x)=
g(x)
x

(1)求a、b的值及函數f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數k的取值范圍;
(3)如果關于x的方程f(|2x-1|)+t•(
4
|2x-1|
-3)=0有三個相異的實數根,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省常州市奔牛高級中學高三(上)第一次段考數學試卷(解析版) 題型:解答題

已知:函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設函數f(x)=
(1)求a、b的值及函數f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數k的取值范圍;
(3)如果關于x的方程f(|2x-1|)+t•(-3)=0有三個相異的實數根,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省蘇州市張家港市梁豐高級中學高三(上)周日數學試卷(5)(解析版) 題型:解答題

已知:函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設函數f(x)=
(1)求a、b的值及函數f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數k的取值范圍;
(3)如果關于x的方程f(|2x-1|)+t•(-3)=0有三個相異的實數根,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012年上海市虹口區(qū)高考數學二模試卷(文科)(解析版) 題型:解答題

已知:函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間上有最大值4,最小值1,設函數
(1)求a、b的值及函數f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在時恒成立,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案