分析 (1)f′(x)=3x2+6ax+b,∵函數(shù)f(x)=x3+3ax2+bx+a2在x=-1處取得極值0,f′(-1)=,f(-1)=0,解得a,b.
(2)由(1)可得:f(x)=x3+6x2+9x+4.可得f′(x),令f′(x)=0,可得極值,根據(jù)方程f(x)=k有三個(gè)解,可得f(x)極小值<k<f(x)的極大值.
解答 解:(1)f′(x)=3x2+6ax+b,
∵函數(shù)f(x)=x3+3ax2+bx+a2在x=-1處取得極值0,∴f′(-1)=3-6a+b=0,-1+3a-b+a2=0,
解得a=2,b=9.
(2)由(1)可得:f(x)=x3+6x2+9x+4.
f′(x)=3x2+12x+9=3(x+1)(x+3),
可知:x=-3時(shí),函數(shù)f(x)取得極大值,f(-3)=4.
x=-1時(shí),函數(shù)f(x)取得極小值,f(-1)=0.
∵方程f(x)=k有三個(gè)解,
∴0<k<4.
則k的取值范圍是0<k<4.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值、方程的解轉(zhuǎn)化為函數(shù)圖象的交點(diǎn),考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{e}$ | C. | $\frac{1}{e^2}$ | D. | $\frac{1}{{\sqrt{e}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{4}$ | B. | $\frac{7\sqrt{3}}{6}$ | C. | $\frac{\sqrt{21}}{3}$ | D. | $\frac{3\sqrt{3}}{4}$或$\frac{7\sqrt{3}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{2}+3$ | B. | 5 | C. | $\sqrt{2}+3$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com