給出下列命題:
①函數(shù)y=tanx的圖象關(guān)于點(kπ,0)(k∈Z)對稱;
②若向量a、b、c滿足a•b=a•c且a≠0,則b=c;
③把函數(shù)數(shù)學(xué)公式的圖象向右平移數(shù)學(xué)公式得到y(tǒng)=3sin2x的圖象;
④若數(shù)列{an}既是等差數(shù)列又是等比數(shù)列,則an=an+1(n∈N*).
其中正確命題的序號為


  1. A.
    ①③④
  2. B.
    ①④
  3. C.
    ③④
  4. D.
    ①②
A
分析:利用正切函數(shù)的對稱中心判斷①的正誤;利用向量的性質(zhì)判斷②的正誤;利用函數(shù)的圖象向右平移是否得到y(tǒng)=3sin2x的圖象判斷③的正誤;利用數(shù)列的特征判斷④的正誤,即可得到選項.
解答:①函數(shù)y=tanx的圖象關(guān)于點(kπ,0)(k∈Z)對稱;滿足正切函數(shù)的性質(zhì),正確;
②若向量滿足≠0,則;顯然不正確,可能有向量
③把函數(shù)的圖象向右平移得到y(tǒng)=3sin2x的圖象;這是正確的.
④若數(shù)列{an}既是等差數(shù)列又是等比數(shù)列,則an=an+1(n∈N*).?dāng)?shù)列是非零常數(shù)列,正確.
故選A
點評:本題是基礎(chǔ)題,考查函數(shù)y=Asin(ωx+φ)的圖象變換,相等向量與相反向量,正切函數(shù)的奇偶性與對稱性,數(shù)列的基本性質(zhì),考查判斷能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)
的一條對稱軸是直線x=-
12

②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]

③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現(xiàn)給出下列命題:
①函數(shù)f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個非零實數(shù)a,使得函數(shù)f (x)在R上是增函數(shù);
③a>1時函數(shù)y=f (|x|) 有最小值-2.
其中正確的命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調(diào)函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)f(x)=2x為R上的“1高調(diào)函數(shù)”;
②函數(shù)f(x)=sin2x為R上的“A高調(diào)函數(shù)”;
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上“m高調(diào)函數(shù)”,那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題是
①②③
①②③
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=sin|x|不是周期函數(shù);        ②函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
③函數(shù)y=|cos2x+
1
2
|
的周期是
π
2
;    ④函數(shù)y=sin(x+
2
)
是偶函數(shù).
其中正確的命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(
2
3
x+
π
2
)
是奇函數(shù);②函數(shù)y=sinx+cosx的最大值為
3
2
;
③函數(shù)y=tanx在第一象限內(nèi)是增函數(shù);
④函數(shù)y=sin(2x+
π
2
)
的圖象關(guān)于直線x=
π
12
成軸對稱圖形.
其中正確的命題序號是

查看答案和解析>>

同步練習(xí)冊答案