精英家教網 > 高中數學 > 題目詳情

已知函數為實常數).

(1)若函數圖像上動點到定點的距離的最小值為,求實數的值;

(2)若函數在區(qū)間上是增函數,試用函數單調性的定義求實數的取值范圍;

(3)設,若不等式有解,求的取值范圍.

 

【答案】

(1);(2);(3)當時,;

時,

【解析】

試題分析:(1)點是函數上的點,因此我們設點坐標為,這樣可把表示為關于的函數,而其最小值為2,利用不等式的知識可求出,即點坐標,用基本不等式時注意不等式成立的條件;(2)題目已經要求我們用函數單調性的定義求解,因此我們直接用定義,設,則函數在上單調遞增,說明恒成立,變形后可得恒成立,即小于的最小值(如有最小值的話),事實上,故;(3)不等式有解,則,因此大于或等于的最小值,下面我們要求的最小值,而,可以看作是關于的二次函數,用換元法變?yōu)榍蠖魏瘮翟诮o定區(qū)間上的最小值,注意分類討論,分類的依據是二次函數的對稱軸與給定區(qū)間的關系.

試題解析:(1)設,則,

                   (1分)

,                (1分)

時,解得;當時,解得.     (1分)

所以,.                    (1分)

 (只得到一個解,本小題得3分)

(2)由題意,任取,且

,  (2分)

因為,所以,即,        (2分)

,得,所以

所以,的取值范圍是.                        (2分)

(3)由,得,

因為,所以,                   (2分)

,則,所以,令,,

于是,要使原不等式在有解,當且僅當).  (1分)

因為,所以圖像開口向下,對稱軸為直線

因為,故當,即時,; (4分)

,即時,.           (5分)

綜上,當時,;

時,.                       (6分)

考點:(1)兩點間的距離公式與基本不等式;(2)函數的單調性;(3)不等式有解問題.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數為實常數)(Ⅰ)若函數為奇函數,求此函數的單調區(qū)間;(Ⅱ)記,當,試討論函數的圖象與函數的圖象的交點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數為實常數).

(1)若,作函數的圖像;

(2)設在區(qū)間上的最小值為,求的表達式;

(3)設,若函數在區(qū)間上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數為實常數)(Ⅰ)若函數為奇函數,求此函數的單調區(qū)間;(Ⅱ)記,當,試討論函數的圖象與函數的圖象的交點個數.

查看答案和解析>>

科目:高中數學 來源:2010-2011年江西省高二第二學期期中考試理科數學 題型:解答題

(本大題共14分)

已知函數為實常數)的兩個極值點為,且滿足

(1)求的取值范圍;

(2)比較的大小.

 

查看答案和解析>>

同步練習冊答案