(08年四川卷文)(本小題滿分12分)
如圖,平面平面,四邊形與都是直角梯形,
,,分別為的中點
(Ⅰ)證明:四邊形是平行四邊形;
(Ⅱ)四點是否共面?為什么?
(Ⅲ)設(shè),證明:平面平面;
解法一:
(Ⅰ)由題意知,
所以
又,故
所以四邊形是平行四邊形。
(Ⅱ)四點共面。理由如下:
由,是的中點知,,所以
由(Ⅰ)知,所以,故共面。又點在直線上
所以四點共面。
(Ⅲ)連結(jié),由,及知是正方形
故。由題設(shè)知兩兩垂直,故平面,
因此是在平面內(nèi)的射影,根據(jù)三垂線定理,
又,所以平面
由(Ⅰ)知,所以平面。
由(Ⅱ)知平面,故平面,得平面平面
解法二:
由平面平面,,得平面,以為坐標(biāo)原點,
射線為軸正半軸,建立如圖所示的直角坐標(biāo)系
(Ⅰ)設(shè),則由題設(shè)得
所以
于是
又點不在直線上
所以四邊形是平行四邊形。
(Ⅱ)四點共面。理由如下:
由題設(shè)知,所以
又,故四點共面。
(Ⅲ)由得,所以
又,因此
即
又,所以平面
故由平面,得平面平面
科目:高中數(shù)學(xué) 來源: 題型:
(08年四川卷文)(本小題滿分12分)
如圖,平面平面,四邊形與都是直角梯形,
,,分別為的中點
(Ⅰ)證明:四邊形是平行四邊形;
(Ⅱ)四點是否共面?為什么?
(Ⅲ)設(shè),證明:平面平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年四川卷文)(本小題滿分12分)
設(shè)進入某商場的每一位顧客購買甲種商品的概率為,購買乙種商品的概率為,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的。
(Ⅰ)求進入商場的1位顧客購買甲、乙兩種商品中的一種的概率;
(Ⅱ)求進入商場的3位顧客中至少有2位顧客既未購買甲種也未購買乙種商品的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com