精英家教網 > 高中數學 > 題目詳情
(2012•德州一模)若過點A(-2,m),B(m,4)的直線與直線2x+y+2=0平行,則m的值為
-8
-8
分析:因為過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,所以兩直線的斜率相等,據此列出方程解之即可.
解答:解:∵直線2x+y-1=0的斜率等于-2,
∴過點A(-2,m)和B(m,4)的直線的斜率k也是-2,
4-m
m+2
=-2,解得m=-8,
故答案為:-8.
點評:本題考查兩斜率存在的直線平行的條件是斜率相等,以及斜率公式的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•德州一模)定義運算
.
ab
cd
.
=ad-bc
,函數f(x)=
.
x-12
-xx+3
.
圖象的頂點是(m,n),且k、m、n、r成等差數列,則k+r=
-9
-9

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•德州一模)若a=log20.9,b=3-
1
3
,c=(
1
3
)
1
2
則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•德州一模)已知
x+y-5≤0
y≥x
x≥1
,則z=2x+3y的最大值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•德州一模)對于直線m,n和平面α,β,γ,有如下四個命題:
(1)若m∥α,m⊥n,則n⊥α
(2)若m⊥α,m⊥n,則n∥α
(3)若α⊥β,γ⊥β,則α∥γ
(4)若m⊥α,m∥n,n?β,則α⊥β
其中真命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•德州一模)已知函數f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函數f(x)的最小正周期及在區(qū)間[0,
π
2
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2,△ABC
的面積等于3,求邊長a的值.

查看答案和解析>>

同步練習冊答案