分析 (1)證明B1C⊥BC1,AO⊥B1C利用直線與平面垂直的判定定理證明B1C⊥平面ABC1,然后證明平面A1B1C⊥平面ABC1.
(2)作OD⊥BC,垂足為D,連接AD作OH⊥AD,垂足為H,證明BC⊥平面AOD,得到OH⊥BC,證明OH⊥平面ABC,說(shuō)明△CBB1為等邊三角形,然后求解點(diǎn)B1到平面ABC的距離.
解答 (本題滿分12分)
(1)證明:因?yàn)镺為B1C交BC1的交點(diǎn),又因?yàn)閭?cè)面BB1C1C為菱形,所以B1C⊥BC1
…(2分)
又AO⊥平面BB1C1C,所以AO⊥B1C,
即B1C⊥AO,故B1C⊥平面ABC1且AO∩BC1=0,
由于B1C?平面A1B1C,故平面A1B1C⊥平面ABC1…(5分)
(2)作OD⊥BC,垂足為D,連接AD,
作OH⊥AD,垂足為H,由于BC⊥AD,BC⊥OD,
故BC⊥平面AOD,所以O(shè)H⊥BC…(7分)
又OH⊥AD,所以O(shè)H⊥平面ABC,
因?yàn)椤螩BB1=60°,所以△CBB1為等邊三角形,
又BC=1,可得$OD=\frac{{\sqrt{3}}}{4}$,
由于OH•AD=OD•OA且$AO=\sqrt{O{D^2}+O{A^2}}=\frac{{\sqrt{7}}}{4}$,$OH=\frac{{\sqrt{21}}}{14}$,
又O為B1C的中點(diǎn),所以點(diǎn)B1到平面ABC的距離為$\frac{{\sqrt{21}}}{7}$.…(12分)
點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理以及性質(zhì)定理的應(yīng)用,點(diǎn)線面距離的求法,考查直線與平面的位置關(guān)系,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1} | B. | {-2,-1} | C. | {-2,-1,0} | D. | {-2,-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -4 | C. | -$\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M=N | B. | M?N | C. | N?M | D. | M∩N=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,1) | B. | $(\frac{3}{2},+∞)$ | C. | (-3,1)∪$(\frac{3}{2},+∞)$ | D. | $(-3,\frac{3}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{S_0}=\sqrt{S_1}+\sqrt{S_2}$ | B. | ${S_0}=\sqrt{{S_1}{S_2}}$ | C. | 2S0=S1+S2 | D. | S02=2S1S2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com