正四棱柱ABCD-A1B1C1D1中,底面邊長為a,側(cè)棱AA1長為ka(k>0),E為側(cè)棱BB1的中點(diǎn),記以AD1為棱,EAD1,A1AD1為面的二面角大小為θ.
(1)是否存在k值,使直線AE⊥平面A1D1E,若存在,求出k值;若不存在,說明理由;
(2)試比較tanθ與2
2
的大。
(1)存在k=2,使得AE⊥平面A1D1E
證明:若AE⊥平面A1D1E,則AE⊥A1E,于是AE2+A1E2=AA12,
2[a2+(
ka
2
)2]=(ka)2
,解得k=2,
∴存在k=2,使得AE⊥平面A1D1E.
(2)取A1A中點(diǎn)M,連接EM,在正四棱柱AC1中,EM⊥平面ADD1A1,過M作MH⊥AD1于H,連接EH,則∠MHE為二面角E-AD1-A1的平面角,即∠MHE=θ,
在Rt△AA1D1中,
MH
A1D1
=
AM
AD1
,即MH=
ka
2
1+k2

在Rt△EMH中,tanθ=
EM
MH
=2
1+
1
k2

當(dāng)0<k<1時,tanθ>2
2
;
當(dāng)k=1時,tanθ=2
2
;
當(dāng)k>1時,tanθ<2
2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知銳二面角α-l-β,A為α面內(nèi)一點(diǎn),A到β的距離為2
3
,到l的距離為4,則二面角α-l-β的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知PO⊥平面ABCD,點(diǎn)O在AB上,EAPO,四邊形ABCD是直角梯形,ABDC,且BC⊥AB,BC=CD=BO=PO,EA=AO=
1
2
CD

(Ⅰ)求證:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大;
(Ⅲ)在線段PE上是否存在一點(diǎn)M,使DM平面PBC,若存在求出點(diǎn)M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)O是正方形紙片ABCD的中心,點(diǎn)E,F(xiàn)分別為AD,BC的中點(diǎn),現(xiàn)沿對角線AC把紙片折成直二面角,則紙片折后∠EOF的大小為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理科做)(1)證明:面APC⊥面BEF;
(2)求平面PBC與平面PCD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a.
(I)若M是底面ABCD的一個動點(diǎn),且滿足|MB|=|MS|,求點(diǎn)M在正方形ABCD內(nèi)的軌跡;
(II)試問在線段SD上是否存在點(diǎn)E,使二面角C-AE-D的大小為60°?若存在,確定點(diǎn)E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正三棱柱ABC-A1B1C1的底面邊長為2,高為1,過頂點(diǎn)A作一平面α與側(cè)面BCC1B1交于EF,且EFBC.若平面α與底面ABC所成二面角的大小為x(0<x≤
π
6
)
,四邊形BCEF面積為y,則函數(shù)y=f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正三棱錐的高為
3
,側(cè)棱長為
7
,那么側(cè)面與底面所成二面角的大小是( 。
A.60°B.30°C.arccos
21
7
D.arcsin
21
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,邊長為2的正方形ABCD中,點(diǎn)E、F分別是邊AB、BC上的點(diǎn),將△AED、△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)A′.
(1)△A′EF恰好是正三角形且Q是A′F的中點(diǎn),求證:EQ⊥平面A′FD
(2)當(dāng)E、F分別是AB、BC的中點(diǎn)時,求二面角A′-EF-D的正弦值.

查看答案和解析>>

同步練習(xí)冊答案