在區(qū)間[0,2]之間隨機抽取一個數(shù)x,則x滿足2x-1≥0的概率為( 。
A、
3
4
B、
1
2
C、
1
4
D、
1
3
考點:幾何概型
專題:概率與統(tǒng)計
分析:由條件知0≤x≤2,然后解不等式的解,根據(jù)幾何概型的概率公式即可得到結論.
解答: 解:在區(qū)間[0,2]之間隨機抽取一個數(shù)x,則0≤x≤2,
由2x-1≥0得x≥
1
2
,即
1
2
≤x≤2

∴根據(jù)幾何概型的概率公式可知滿足2x-1≥0的概率為
2-
1
2
2-0
=
3
4
,
故選:A.
點評:本題主要考查幾何概型的概率的計算,根據(jù)不等式的性質(zhì)解出不等式的是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-a|(a>0),且不等式f(x)≥|x+1|的解集為{x|x≤
1
2
}.
(Ⅰ)求a的值;
(Ⅱ)設函數(shù)g(x)=f(x)+|2x+1|,若不等式|2m+n|+|m-n|≥|m|•g(x)對任意m,n∈R且m≠0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,轉(zhuǎn)盤被分成了4部分,其中∠AOB=∠COD=90°,則隨意轉(zhuǎn)動轉(zhuǎn)盤,指針指向∠AOB和∠COD所在區(qū)域的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(2,1),B(1,-2),C(
3
5
,-
1
5
),動點P(a,b)滿足0≤
OP
OA
≤2且0≤
OP
OB
≤2,則點P到點C的距離大于
1
4
的概率為( 。
A、1-
5
64
π
B、
5
64
π
C、1-
π
16
D、
π
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足約束條件
x-y≤0
x+y-1≥0
x-2y+2≥0
,則z=2x-y的最大值為( 。
A、-1B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點分別為F1,F(xiàn)2,點O為坐標原點,點P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點A,過F2作直線PQ的垂線,垂足為B,則|OA|與|OB|的長度依次為( 。
A、a,a
B、a,
a2+b2
C、
a
2
,
3a
2
D、
a
2
,a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-2x<0},B={x|x≤-1或x>1},則A∩(∁RB)=( 。
A、{x|0<x<1}
B、{x|1≤x<2}
C、{x|0<x≤1}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的方程為y2=2px(p>0),點R(1,2)在拋物線C上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點Q(l,1)作直線交拋物線C于不同于R的兩點A,B,若直線AR,BR分別交直線l:y=2x+2于M,N兩點,求|MN|最小時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,函數(shù)f(x)=2cosxsin(x-A)+sinA(x∈R)在x=
12
處取得最大值.
(1)求角A的大。
(2)若a=7且sinB+sinC=
13
3
14
,求△ABC的面積.

查看答案和解析>>

同步練習冊答案