函數(shù)y=f(x)是定義在[a,b]上的減函數(shù),那么y=-是
[ ]
A.在[f(a),f(b)]上的增函數(shù)
B.在[f(b),f(a)]上的減函數(shù)
C.在[f(a),f(b)]上的減函數(shù)
D.在[f(b),f(a)]上的增函數(shù)
科目:高中數(shù)學 來源: 題型:
1 | x+b |
查看答案和解析>>
科目:高中數(shù)學 來源:同步題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
設函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
設函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)如圖9-3,已知:射線OA為y=kx(k>0,x>0),射線OB為y= -kx(x>0),動點P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(1)當k為定值時,動點P的縱坐標y是橫坐標x的函數(shù),求這個函數(shù)y=f(x)的解析式;
(2)根據(jù)k的取值范圍,確定y=f(x)的定義域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com