由橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的頂點B(0,-b)引弦BP,求BP長的最大值.
分析:設橢圓
x2
a2
+
y2
b2
=1
(a>b>0)在x軸上的頂點分別為E(-a,0)、F(a,0),結(jié)合圖形可知BP長的最大值是BE和BF的長,用兩點間距離公式能夠推導出BP長的最大值.
解答:精英家教網(wǎng)解:設橢圓
x2
a2
+
y2
b2
=1
(a>b>0),
在x軸上的頂點分別為E(-a,0)、F(a,0),
結(jié)合圖形可知BP長的最大值是BE和BF的長,其最大值為|BE|=
a2+b2

答案:
a2+b2
點評:本題考查橢圓的性質(zhì),作出圖形數(shù)形結(jié)合事半功倍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一條準線為x=-4,且與拋物線y2=8x有相同的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點P是該橢圓的左準線與x軸的交點,過點P的直線l與橢圓相交于M、N兩點,且線段MN的中點恰好落在由該橢圓的兩個焦點、兩個短軸頂點所圍成的四邊形區(qū)域內(nèi)(包括邊界),求此時直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與圓類似,連接圓錐曲線上兩點的線段叫做圓錐曲線的弦.過有心曲線(橢圓、雙曲線)中心(即對稱中心)的弦叫做有心曲線的直徑.對圓x2+y2=r2,由直徑所對的圓周角是直角出發(fā),可得:若AB是圓O的直徑,M是圓O上異于A、B的一點,且AM,BM均與坐標軸不平行,則kAM•kBM=-1.類比到橢圓
x2
a2
+
y2
b2
=1
,類似結(jié)論是
若AB是橢圓
x2
a2
+
y2
b2
=1
的直徑,M是橢圓上異于A、B的一點,且AM、BM均與坐標軸不平行,則kAM•kBM=-
b2
a2
若AB是橢圓
x2
a2
+
y2
b2
=1
的直徑,M是橢圓上異于A、B的一點,且AM、BM均與坐標軸不平行,則kAM•kBM=-
b2
a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列推理中屬于歸納推理且結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•徐匯區(qū)三模)定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點M、N關于直線y=x+1對稱,求實數(shù)b的取值范圍?
(3)如圖:直線l與兩個“相似橢圓”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點A,B和點C,D,證明:|AC|=|BD|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有如下四個推斷:
①由an=2n-1,求出S1=12,S2=22S3=32,…,推斷:數(shù)列{an}的前n項和Sn=n2
②由f(x)=xcosx滿足f(-x)=-f(x)對?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù)
③由圓x2+y2=r2的面積S=πr2,推斷:橢圓
x2
a2
+
y2
b2
=1
的面積S=πab
④由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對一切n∈N*,(n+1)2>2n
其中推理中屬于歸納推理且結(jié)論正確的是
 
(將符合條件的序號都填上).

查看答案和解析>>

同步練習冊答案