5.從1、2、3、4、5、6中任三個(gè)數(shù),則所取的三個(gè)數(shù)按一定的順序可排成等差數(shù)列的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{20}$

分析 先求出基本事件總數(shù)n=${C}_{6}^{3}$=20,再利用列舉法求出所取的三個(gè)數(shù)按一定的順序可排成等差數(shù)列包含的基本事件個(gè)數(shù),由此能求出所取的三個(gè)數(shù)按一定的順序可排成等差數(shù)列的概率.

解答 解:從1、2、3、4、5、6中任取三個(gè)數(shù),
基本事件總數(shù)n=${C}_{6}^{3}$=20,
所取的三個(gè)數(shù)按一定的順序可排成等差數(shù)列包含的基本事件有:
(1,2,3),(2,3,4),(3,4,5),(4,5,6),(1,3,5),(2,4,6),
共有6個(gè),
則所取的三個(gè)數(shù)按一定的順序可排成等差數(shù)列的概率為p=$\frac{6}{20}=\frac{3}{10}$.
故選:A.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.我國南北朝時(shí)代的數(shù)學(xué)家祖暅提出體積的計(jì)算原理(祖暅原理):“冪勢既同,則積不容 異”.“勢’’即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處截得兩幾何體的截面積恒等,那么這兩個(gè)幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標(biāo)系中,圖1是一個(gè)形狀不規(guī)則的封閉圖形,圖2是一個(gè)上底為l的梯形,且當(dāng)實(shí)數(shù)t取[0,3]上的任意值時(shí),直線y=t被圖l和圖2所截得的兩線段長始終相等,則圖l的面積為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在矩形ABCD中,將△ABC沿其對角線AC折起來得到△AB1C,且頂點(diǎn)B1在平面ACD上的射影O恰好落在邊AD上(如圖所示).
(Ⅰ)證明:AB1⊥平面B1CD;
(Ⅱ)若AB=1,BC=$\sqrt{3}$,求三棱錐B1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角,$AE∥BF,AB=\frac{1}{2}BF=1$,
平面ABCD⊥平面ABFE.
(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C-EF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在數(shù)列{an}中,a1=2,an+1=3an,(n∈N*),則a4=54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級,等級編號(hào)依次為1,2,3,4,5.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取20件,對其等級編號(hào)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
等級12345
頻率a0.20.45bc
(1)若所抽取的20件產(chǎn)品中,等級編號(hào)為4的恰有3件,等級編號(hào)為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級編號(hào)為4的3件產(chǎn)品記為x1,x2,x3,等級編號(hào)為5的2件產(chǎn)品記為y1,y2,現(xiàn)從x1,x2,x3,y1,y2這5件產(chǎn)品中任取兩件(假定每件產(chǎn)品被取出的可能性相同),寫出所有可能的結(jié)果,并求這兩件產(chǎn)品的等級編號(hào)恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,則P(0<ξ<6)=0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|、|$\overrightarrow$|、|$\overrightarrow{a}$-$\overrightarrow$|∈[2,6],則$\overrightarrow{a}$•$\overrightarrow$的取值范圍為[-14,34].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F與橢圓Γ:$\frac{x^2}{2}+{y^2}$=1的一個(gè)焦點(diǎn)重合,點(diǎn)M(x0,2)在拋物線上,過焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn).
(Ⅰ)求拋物線C的方程以及|MF|的值;
(Ⅱ)記拋物線C的準(zhǔn)線與x軸交于點(diǎn)H,試問是否存在常數(shù)λ∈R,使得$\overrightarrow{AF}=λ\overrightarrow{FB}$且|HA|2+|HB|2=$\frac{85}{4}$都成立?若存在,求出實(shí)數(shù)λ的值; 若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案