【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標(biāo);若不存在,也請說明理由.
【答案】(1);(2)見解析
【解析】
(1)據(jù)題意,得 ,求解方程組確定a,b的值即可求得橢圓方程;
(2)據(jù)題設(shè)知點,當(dāng)直線的斜率存在時,設(shè)直線的方程為.與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理有. 假設(shè)存在點M滿足題意,則,結(jié)合韋達(dá)定理求解實數(shù)m的值即可;然后討論斜率不存在的情況即可確定定點M存在.
(1)據(jù)題意,得
解得,
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)據(jù)題設(shè)知點,當(dāng)直線的斜率存在時,設(shè)直線的方程為.
由,得.
設(shè),則.
設(shè),則直線的斜率分別滿足.
又因為直線的斜率互為相反數(shù),
所以,
所以,所以,
所以,
所以,所以.
若對任意恒成立,則,
當(dāng)直線的斜率不存在時,若,則點滿足直線的斜率互為相反數(shù).
綜上,在軸上存在一個定點,使得直線的斜率互為相反數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 5 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)的解析式;
(2)將圖象上所有點向左平行移動個單位長度,并把圖象上所有點的橫坐標(biāo)縮短為原來的(縱坐標(biāo)不變),得到的圖象.若圖象的一個對稱中心為,求的最小值;
(3)在(2)條件下,求在上的增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究每周累計戶外暴露時間是否足夠(單位:小時)與近視發(fā)病率的關(guān)系,對某中學(xué)一年級名學(xué)生進(jìn)行不記名問卷調(diào)查,得到如下數(shù)據(jù):
(1)用樣本估計總體思想估計該中學(xué)一年級學(xué)生的近視率;
(2)能否認(rèn)為在犯錯誤的概率不超過的前提下認(rèn)為不足夠的戶外暴露時間與近視有關(guān)系?
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時,求的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團(tuán)隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表. 請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計 | |
50歲以上(含50歲) | |||
50歲以下 | 55 | ||
總計 | 200 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立. 為了深入研究,該研究團(tuán)隊隨機調(diào)查了名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝,字謙光,南宋時期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數(shù)表,稱之為“開方作法本源”圖,并說明此表引自11世紀(jì)中葉(約公元1050年)賈憲的《釋鎖算術(shù)》,并繪畫了“古法七乘方圖”.故此,楊輝三角又被稱為“賈憲三角”.楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:
基于上述規(guī)律,可以推測,當(dāng)時,從左往右第22個數(shù)為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一工廠計劃生產(chǎn)某種當(dāng)?shù)卣刂飘a(chǎn)量的特殊產(chǎn)品,月固定成本為1萬元,設(shè)此工廠一個月內(nèi)生產(chǎn)該特殊產(chǎn)品萬件并全部銷售完.根據(jù)當(dāng)?shù)卣螽a(chǎn)量滿足,每生產(chǎn)件需要再投入萬元,每1萬件的銷售收入為(萬元),且每生產(chǎn)1萬件產(chǎn)品政府給予補助(萬元).(注:月利潤=月銷售收入+月政府補助-月總成本).
(1)寫出月利潤(萬元)關(guān)于月產(chǎn)量(萬件)的函數(shù)解析式;
(2)求該工廠在生產(chǎn)這種特殊產(chǎn)品中所獲得的月利潤最大值(萬元)及此時的月生產(chǎn)量(萬件)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com