(本小題滿分12分)某公司對(duì)工廠A的一批產(chǎn)品進(jìn)行了抽樣檢測(cè)。右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106]。

(1)求圖中x的值;

(2)若將頻率視為概率,從這批產(chǎn)品中有放回地隨機(jī)抽取3件,求至多有2件產(chǎn)品的凈重在的概率;

(3)經(jīng)過考察后,該公司決定在2011年年初投資到工廠A50萬元,到年底可能獲利,也可能虧損,且這兩種情況發(fā)生的概率分別為合格產(chǎn)品和不合格產(chǎn)品的概率(若產(chǎn)品凈重在為合格產(chǎn)品,其余為不合格產(chǎn)品)。設(shè)2011年底公司的投資總資產(chǎn)(本金+利潤(rùn))為,求的分布列及數(shù)學(xué)期望。

(本小題滿分12分)

解:(1)依題意及頻率分布直方圖知,,  2分

解得                                                 …………   3分

(2)法1:設(shè)所抽取到得產(chǎn)品的件數(shù)為X,由題意知,,因此

                        …………   5分

所以至多有2件產(chǎn)品的凈重在的概率

。………   7分

法2:恰好抽取到3件產(chǎn)品的凈重在的概率為

                                     …………   5分

所以至多有2件產(chǎn)品的凈重在的概率

。                            …………   7分(3)法1:可能的值為:50×(1+32%)=66(萬元)

                        50×(1-16%)=42(萬元)                      …………   8分

                                    …………   10分

的分布列為

                                                      …………   11分

(萬元).                         …………   12分

命題意圖:本題主要考查頻率分布直方圖、二項(xiàng)分布、離散型隨機(jī)變量的期望等知識(shí),立足考查數(shù)據(jù)處理能力、計(jì)算能力和解決實(shí)際問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案