已知f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-4x+3,
(Ⅰ)求f[f(-1)]的值;  
(Ⅱ)求函數(shù)f(x)的解析式.
分析:(Ⅰ)利用函數(shù)是奇函數(shù),推出f(0)=0,求出f(-1)的值,然后求f[f(-1)]的值;  
(Ⅱ)利用函數(shù)的奇偶性,以及函數(shù)的解析式,直接求函數(shù)f(x)的解析式.
解答:解:(Ⅰ)因?yàn)閒(x)是定義在實(shí)數(shù)集R上的奇函數(shù),f(0)=0,
當(dāng)x>0時(shí),f(x)=x2-4x+3,
f[f(-1)]=f[-f(1)]=f(0)=0…4′
(Ⅱ)因?yàn)閒(x)是定義在實(shí)數(shù)集R上的奇函數(shù),∴f(0)=0,
且當(dāng)x>0時(shí),f(x)=x2-4x+3,
x<0時(shí)f(x)=-f(-x)=-(x2+4x+3)
=-x2-4x-3
f(x)=
x2-4x+3(x>0)
0(x=0)
-x2-4x-3(x<0)
…12
點(diǎn)評:本題考查函數(shù)的解析式的求法,函數(shù)值的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊答案