已知橢圓數(shù)學公式,直線x+y-4=0,及橢圓左準線l,橢圓上點P到x+y-4=0的距離為m,到l的距離為n,則數(shù)學公式的最小值為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    5
  4. D.
    數(shù)學公式
A
分析:設出P的坐標為(cosα,sinα),根據(jù)橢圓方程找出橢圓的左準線方程,然后利用點到直線的距離公式表示出P到x+y-4=0的距離m,表示出P到準線l的距離n,把表示出的m與n代入中,然后利用三角函數(shù)的方法求出最小值即可.
解答:設P(cosα,sinα),由橢圓的方程得到左準線l的方程為x=-2,
由題意得:m=,n=|cosα+2|,
=+=(其中sinβ=,cosβ=
當sin(β+α)=-1時,m+n≥=,
所以的最小值為
故選A
點評:此題考查學生掌握橢圓的簡單性質(zhì),靈活運用點到直線的距離公式化簡求值,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓中心在坐標原點,焦點在x軸上,離心率e=
3
2
,若橢圓與直線x+y+1=0交于P,Q兩點,且OP⊥OQ(O為坐標原點),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省池州市2012屆高三上學期第一次模試考試數(shù)學文科試題 題型:044

已知橢圓與直線x+y-1=0相交于兩點A、B.

(1)當橢圓的半焦距c=1且a2,b2,c2成等差數(shù)列時,求橢圓的方程;

(2)在(1)的條件下,求弦AB的長度;

(3)當橢圓的離心率e滿足,且,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆內(nèi)蒙古巴市高二12月月考文科數(shù)學試題卷(解析版) 題型:解答題

已知橢圓,直線:y=x+m

(1)若與橢圓有一個公共點,求的值;

(2)若與橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶一中高三(下)4月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

已知橢圓,直線x+y-4=0,及橢圓左準線l,橢圓上點P到x+y-4=0的距離為m,到l的距離為n,則的最小值為( )
A.
B.
C.5
D.

查看答案和解析>>

同步練習冊答案