分析 (I)直接利用極坐標(biāo)與直角坐標(biāo)互化求出C1的直角坐標(biāo)方程,C2的普通方程.
(II)求出C1為以(0,1)為圓心,r=1為半徑的圓,利用圓心距推出距離的最值得到范圍即可.
解答 (本小題滿分10分)
解:(I)曲線C1方程為ρ=2sinθ,可得ρ2=2ρsinθ,可得x2+y2=2y,
∴C1的直角坐標(biāo)方程:x2+(y-1)2=1,
C2的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$,消去參數(shù)t可得:
C2的普通方程:$\sqrt{3}x-y+\sqrt{3}=0$.…(4分)
(II)由(I)知,C1為以(0,1)為圓心,r=1為半徑的圓,C1的圓心(0,1)到C2的距離為$d=\frac{{|{-1+\sqrt{3}}|}}{{\sqrt{3+1}}}=\frac{{\sqrt{3}-1}}{2}<1$,則C1與C2相交,P到曲線C2距離最小值為0,最大值為$d+r=\frac{{\sqrt{3}+1}}{2}$,
則點(diǎn)P到曲線C2距離的取值范圍為$[{0,\frac{{\sqrt{3}+1}}{2}}]$.…(10分)
點(diǎn)評 本題考查極坐標(biāo)與直角坐標(biāo)方程的互化,參數(shù)方程與直角坐標(biāo)方程的互化,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第6項 | B. | 第7項 | C. | 第8項 | D. | 第9項 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|2<x<3} | B. | {x|-$\frac{1}{2}$<x<2} | C. | {x|-1$<x<-\frac{1}{2}$} | D. | {x|-1$<x<\frac{1}{2}$或2<x<3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com