(1)求△APB的重心G的軌跡方程.
(2)證明∠PFA=∠PFB.
22.解:(1)設(shè)切點A、B坐標(biāo)分別為,
∴切線AP的方程為:
切線BP的方程為:
解得P點的坐標(biāo)為:
所以△APB的重心G的坐標(biāo)為 ,
所以,由點P在直線l上運動,從而得到重心G的軌跡方程為:
(2)方法1:
因為
由于P點在拋物線外,則
∴
同理有
∴∠AFP=∠PFB.
方法2:①當(dāng)所以P點坐標(biāo)為,則P點到直線AF的距離為:
即
所以P點到直線BF的距離為:
所以d1=d2,即得∠AFP=∠PFB.
②當(dāng)時,直線AF的方程:
直線BF的方程:
所以P點到直線AF的距離為:
同理可得到P點到直線BF的距離,因此由d1=d2,可得到∠AFP=∠PFB.
科目:高中數(shù)學(xué) 來源: 題型:
(05年江西卷理)(14分)
如圖,設(shè)拋物線的焦點為F,動點P在直線上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點.
(1)求△APB的重心G的軌跡方程.
(2)證明∠PFA=∠PFB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)如圖,設(shè)拋物線的準(zhǔn)線與x軸交于點,
焦點為為焦點,離心率為的橢圓與拋物線在x軸上方的交點為P
,延長交拋物線于點Q,M是拋物線上一動點,且M在P與Q之間運動。
1) 當(dāng)m=3時,求橢圓的標(biāo)準(zhǔn)方程;
2) 若且P點橫坐標(biāo)為,求面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年湖南省長沙市高二上學(xué)期期末檢測數(shù)學(xué)文卷 題型:解答題
(本小題滿分13分)
如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點為;以為焦點,離心率的橢圓與拋物線在軸上方的交點為,延長交拋物線于點,是拋物線上一動點,且M在與之間運動.
(1)當(dāng)時,求橢圓的方程;
(2)當(dāng)的邊長恰好是三個連續(xù)的自然數(shù)時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三第四次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分14分)
如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點為;以為焦點,離心率的橢圓與拋物線在軸上方的交點為,延長交拋物線于點,是拋物線上一動點,且M在與之間運動.
(1)當(dāng)時,求橢圓的方程,
(2)當(dāng)的邊長恰好是三個連續(xù)的自然數(shù)時,
求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com