(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實(shí)數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.
(1);(3).
【解析】
試題分析:(1)根據(jù)f(x)為奇函數(shù),所以f(-x)+f(x)=0恒成立,所以
,
所以,經(jīng)檢驗(yàn)當(dāng)a=1時(shí),顯然不符合要求,
所以a=-1.
(2)證明:設(shè)
設(shè),
所以,
所以
即,
所以函數(shù)在區(qū)間上單調(diào)遞增;
(3) 對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,
即,由(2)知在[3,4]上是增函數(shù),所以當(dāng)x=3時(shí),取得最小值,最小值為
所以.
考點(diǎn):函數(shù)的奇偶性,復(fù)合函數(shù)的單調(diào)性證明,函數(shù)單調(diào)性在不等式恒成立問題中的應(yīng)用.
點(diǎn)評(píng):函數(shù)是奇偶性可知f(-x)+f(x)=0恒成立,這是求解析式參數(shù)的基本方法.
復(fù)合函數(shù)單調(diào)性的證明可先證明內(nèi)函數(shù)的單調(diào)性,再根據(jù)外函數(shù)的單調(diào)性證明即可,同學(xué)們要認(rèn)真體會(huì)本小題的證法.
不等式恒成立問題在參數(shù)與變量能分離的情況下,最好分離參數(shù),然后轉(zhuǎn)化為函數(shù)最值求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三第六次模擬考試數(shù)學(xué)理卷 題型:選擇題
.已知函數(shù)為奇函數(shù),則下列結(jié)論正確的是( )
A P=1 ,f(x)為R上的減函數(shù) B P= -1 ,f(x) 為R上的減函數(shù)
C P=1 ,f(x) 為R上的增函數(shù) D P= -1 ,f(x) 為R上的增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:黑龍江省2012屆高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:選擇題
已知函數(shù) 為奇函數(shù),且為增函數(shù), 則函
數(shù)的圖象為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年云南省江高二3月月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)
已知函數(shù)為奇函數(shù),為偶函數(shù),且 .
(1)求函數(shù)的解析式;
(2)若存在,則稱是函數(shù)的一個(gè)不動(dòng)點(diǎn),求函數(shù)的不動(dòng)點(diǎn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com