已知橢圓的左、右焦點(diǎn)分別為F1、F2,點(diǎn)A為橢圓C短軸的一個(gè)端點(diǎn),直線AF1與C的另一個(gè)交點(diǎn)為B,若|AF2|、|AB|、|BF2|成等差數(shù)列,則C的離心率為( )
A.
B.
C.
D.
【答案】分析:根據(jù)橢圓的定義,|AF2|、|AB|、|BF2|均與a有聯(lián)系,結(jié)合|AF2|、|AB|、|BF2|成等差數(shù)列,列相關(guān)的方程,尋求a c的值或a,c的關(guān)系.
解答:解:由橢圓的標(biāo)準(zhǔn)方程可得,|AF2|=a=3,設(shè)|BF2|=x,根據(jù)橢圓的定義,|B F1|=6-x,∴|AB|=|AF1|+|B F1|=3+(6-x)=9-x.∵|AF2|、|AB|、|BF2|成等差數(shù)列,列方程3+x=2(9-x),∴x=5,△BAF2是直角三角形,∴|F1F2|=|AF2|即2c=a,∴e==
故選B
點(diǎn)評:橢圓的定義顯示了橢圓的幾何本質(zhì),在此基礎(chǔ)上橢圓中具有明顯幾何意義的線段如,∴|F1F2|=2c,|AF2|=a等要熟練準(zhǔn)確.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過點(diǎn)P(1,
3
2
)
.M為橢圓上的動(dòng)點(diǎn),以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若圓M與y軸有兩個(gè)交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn) 軸上方),使為等腰三角形.

⑴求離心率的范圍;

    ⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)分別作直線交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,且,證明:直線過定點(diǎn)().

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)     已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中

F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

(I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

已知橢圓的左、右焦點(diǎn)分別為、,離心率,右準(zhǔn)線方程為

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)過點(diǎn)的直線與該橢圓交于M、N兩點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊答案