【題目】已知函數(shù),.

1)設(shè)函數(shù),討論的單調(diào)性;

2)設(shè)函數(shù),若的圖象與的圖象有,兩個不同的交點,證明:.

【答案】1)答案不唯一,具體見解析(2)證明見解析

【解析】

1)求出的表達式并求導,分類討論的單調(diào)性;(2)由題意可得有兩個不同的根,則①,②, 消去參數(shù),構(gòu)造函數(shù)求導研究函數(shù)單調(diào)性并利用放縮法推出,再次構(gòu)造函數(shù),通過證明來證明.

1,定義域為,

.

時,上單調(diào)遞增,在上單調(diào)遞減.

時,令,得,所以上單調(diào)遞增;

,得,所以上單調(diào)遞減.

時,,上單調(diào)遞增.

時,令,得,所以,上單調(diào)遞增;

,得,所以上單調(diào)遞減.

2,

因為函數(shù)的圖象與的圖象有兩個不同的交點,

所以關(guān)于的方程,即有兩個不同的根.

由題知①,②,

+②得③,

-①得.

由③,④得,不妨設(shè),記.

,則

所以上單調(diào)遞增,所以,

,即,所以.

因為

所以,即.

,則上單調(diào)遞增.

,所以,

,所以.

兩邊同時取對數(shù)可得,得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為3的正方形ABCD中,點E,F分別在邊AB,BC(如圖1),且BE=BF,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′(如圖2).

1)求證ADEF;

2BFBC時,求點A到平面DEF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長為2的正方形,,且.

1)證明:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年初,我國突發(fā)新冠肺炎疫情.面對“突發(fā)災難”,舉國上下心,繼解放軍醫(yī)療隊于除夕夜飛抵武漢,各省醫(yī)療隊也陸續(xù)增援,紛紛投身疫情防控與病人救治之中.為分擔“逆行者”的后顧之憂,某大學學生志愿者團隊開展“愛心輔學”活動,為抗疫前線工作者子女在線輔導功課.現(xiàn)隨機安排甲、乙、丙3名志愿者為某學生輔導數(shù)學、物理、化學、生物4門學科,每名志愿者至少輔導1門學科,每門學科由1名志愿者輔導,則數(shù)學學科恰好由甲輔導的概率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若函數(shù)在區(qū)間上的值域為,則稱區(qū)間是函數(shù)完美區(qū)間,另外,定義區(qū)間復區(qū)間長度,已知函數(shù),則(

A.的一個完美區(qū)間

B.的一個完美區(qū)間

C.的所有完美區(qū)間復區(qū)間長度的和為

D.的所有完美區(qū)間復區(qū)間長度的和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進行調(diào)查統(tǒng)計.200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.

1)完成下列列聯(lián)表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關(guān);

生二孩

不生二孩

合計

頭胎為女孩

60

頭胎為男孩

合計

200

2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的左、右焦點分別為軸,直線軸于點,,為橢圓上的動點,的面積的最大值為1.

(1)求橢圓的方程;

(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】馬林梅森是17世紀法國著名的數(shù)學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎(chǔ)上對2p1作了大量的計算、驗證工作,人們?yōu)榱思o念梅森在數(shù)論方面的這一貢獻,將形如2P1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,離心率為為坐標原點.

1)求橢圓的標準方程;

2)設(shè),,為橢圓上的三點,交于點,且,當的中點恰為點時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

同步練習冊答案