已知關(guān)于x的一元二次方程mx2+(2m-3)x+(m-2)=0的兩根分別是tanα,tanβ.求tan(α+β)的取值范圍.
分析:利用韋達定理,有tanα+tanβ=-
2m-3
m
,tanαtanβ=
m-2
m
,根據(jù)兩角和的正切公式,將tan(α+β) 展開,最后化成關(guān)于m的函數(shù),求出范圍,注意一元二次方程根存在的條件是△≥0.
解答:解:由題意,可得
m≠0
△=(2m-3)2-4m(m-2)≥0

解得m≤
9
4
且m≠0
.        
由韋達定理有tanα+tanβ=-
2m-3
m
,tanαtanβ=
m-2
m

tan(α+β)=
tanα+tanβ
1-tanαtanβ
=-m+
3
2
,
m≤
9
4
且m≠0
,從而求得tan(α+β)的取值范圍是[-
3
4
3
2
)∪(
3
2
,+∞)
點評:本題考查一元二次方程根存在的條件,兩角和的正切公式的應用,函數(shù)思想及函數(shù)值域求解.是道好題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(1)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設點(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機點,求y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在一個紅綠燈路口,紅燈、黃燈和綠燈的時間分別為30秒、5秒和40秒.當你到達路口時,求不是紅燈的概率.
(2)已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(Ⅰ)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[|m+n|2上是增函數(shù)的概率;
(Ⅱ)設點(
1
2
|m+n|min=
2
2
)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機點,求MD上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的一元二次不等式ax2+bx+c>0的解集為(-2,3),則關(guān)于x的不等式cx+b
x
+a<0的解集為
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•藍山縣模擬)已知關(guān)于x的一元二次不等式ax2+bx+c≥0在實數(shù)集上恒成立,且a<b,則T=
a+b+cb-a
的最小值為
3
3

查看答案和解析>>

同步練習冊答案