某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響.
(1)求客人游覽2個景點的概率;
(2)設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值,求ξ的分布及數(shù)學期望.

解:(1)分別記“客人游覽甲景點”、
“客人游覽乙景點”和“客人游覽丙景點”為A1,A2,A3,
由題設條件知A1,A2,A3相互獨立,
且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,
則游覽兩個景點的概率為:
P(A1•A2)+P(A1A3)+
=0.4×0.5×(1-0.6)+0.4×(1-0.5)×0.6+(1-0.4)×0.5×0.6
=0.08+0.12+0.18
=0.38.
(2)客人游覽的景點數(shù)的可能取值為0,1,2,3.
相應地,客人沒有游覽的景點數(shù)的可能取值為3,2,1,0,
所以ξ的可能取值為1,3.
P(ξ=3)=P(A1•A2•A3)+P(
=0.4×0.5×0.6+(1-0.4)×(1-0.5)×(1-0.6)
=0.24.
P(ξ=1)=1-0.24=0.76.
∴ξ的分布列為:
ξ 1 3
P 0.76 0.24
數(shù)學期望:Eξ=1×0.76+3×0.24=1.48.
分析:(1)分別記“客人游覽甲景點”、“客人游覽乙景點”和“客人游覽丙景點”為A1,A2,A3,由題設條件知A1,A2,A3相互獨立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,則游覽兩個景點的概率為:P(A1•A2)+P(A1A3)+,由此能夠求出結果.
(2)客人游覽的景點數(shù)的可能取值為0,1,2,3.相應地,客人沒有游覽的景點數(shù)的可能取值為3,2,1,0,所以ξ的可能取值為1,3.P(ξ=3)=P(A1•A2•A3)+P(),由此能求出ξ的分布列和數(shù)學期望.
點評:本題考查離散型隨機變量的期望和方差,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(Ⅰ)求ξ的分布及數(shù)學期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市有甲、乙、丙3個旅游景點,一位客人游覽這3個景點的概率分別為0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(1)求ξ的分布;
(2)求ξ的數(shù)學期望及方差;
(3)記“函數(shù)f(x)=x2-2ξx+lnx是單調增函數(shù)”為事件A,求事件A的概率.
(可能用到的數(shù)據(jù):0.762≈0.58,0.482≈0.23,1.522≈2.31,0.242≈0.06)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響.
(1)求客人游覽2個景點的概率;
(2)設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值,求ξ的分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科做)某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(Ⅰ)求ξ的分布及數(shù)學期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(05年湖南卷理)(14分)

       某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.

(Ⅰ)求ξ的分布及數(shù)學期望;

(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞上單調遞增”為事件A,求事件A的概率.

查看答案和解析>>

同步練習冊答案