如圖,在四棱錐中,底面為直角梯形,且,,平面底面,的中點,是棱的中點,.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.
(Ⅰ)詳見解析;(Ⅱ).

試題分析:(Ⅰ)本小題是一個證明線面平行的題,一般借助線面平行的判定定理求解,連接,因為,,所以四邊形為平行四邊形,連接,連接,則,則根據(jù)線面平行的判定定理可知平面.
(Ⅱ)由于平面底面,,由面面垂直的性質定理可知底面
所以是三棱錐的高,且,又因為可看成差構成,由(Ⅰ)知是三棱錐的高,,可知,又由于,可知.
試題解析:連接,因為,所以四邊形為平行四邊形
連接,連接,則
平面平面,所以平面.
(2),
由于平面底面,底面
所以是三棱錐的高,且
由(1)知是三棱錐的高,,
所以,則.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,AA1,BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1,CB1的中點,DE⊥面CBB1.

(1)證明:DE∥面ABC;
(2)求四棱錐C­ABB1A1與圓柱OO1的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

中,AB=2BF=4,C,E分別是AB,AF的中點(如下左圖).將此三角形沿CE對折,使平面AEC⊥平面BCEF(如下右圖),已知D是AB的中點.

(1)求證:CD∥平面AEF;
(2)求證:平面AEF⊥平面ABF;
(3)求三棱錐C-AEF的體積,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在中,,,上的高,沿折起,使.

(1)證明:平面平面;
(2)設,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,底面,,點的中點,,交于點

(1)求證:平面平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱錐中,.

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱中,AC⊥BC,AB⊥,D為AB的中點,且CD⊥

(Ⅰ)求證:平面⊥平面ABC;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正三棱錐中,分別是的中點,,且,則正三棱錐的體積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,一只螞蟻由棱長為1的正方體ABCD-A1B1C1D1點出發(fā)沿正方體的表面到達點的最短路程為        

查看答案和解析>>

同步練習冊答案