已知在△ABC中,BC=6,AB=4,cosB=
1
3
,則AC=(  )
A、6
B、2
6
C、3
6
D、4
6
考點:余弦定理
專題:解三角形
分析:由條件利用余弦定理求得AC的值.
解答: 解:△ABC中,∵BC=6,AB=4,cosB=
1
3

則由余弦定理可得 AC2=AB2+BC2-2AB•BC•cosB=16+36-48×
1
3
=36,
∴AC=6,
故選:A.
點評:本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(2π+α)=-
1
2
,則tan2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log37,b=23.3,c=0.8,則( 。
A、b<a<c
B、c<a<b
C、c<b<a
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則“x≥2,且y≥2”是“x2+y2≥8”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(2,
π
6
)
到直線ρ(
3
cosθ+sinθ)=2
的距離為( 。
A、
3
4
B、2
C、
3
-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F為拋物線x2=2py(p>0)的焦點,M為其上一點,且|MF|=2p,則直線MF的斜率為( 。
A、-
3
3
B、±
3
3
C、-
3
D、±
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=
π
8
,則φ的值為( 。
A、-
π
4
B、-
π
8
C、-
4
D、-
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則
i2(-1+i)
1+i
=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把半圓弧分成4等份,以這些分點(包括直徑的兩端點)為頂點,作出三角形,從這些三角形中任取3個不同的三角形,則這3個不同的三角形中鈍角三角形的個數(shù)X的期望為( 。
A、
19
10
B、2
C、3
D、
21
10

查看答案和解析>>

同步練習(xí)冊答案